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ABSTRACT

. ,; i K
4 The research deals with the problem of al;/;,'sécrity-"excited thermomechanical field in a

medium with a surface layer and a near surface void defect. The thermomechanical field
governs the mode of cracking, which leads to failure in the wear surface. The presence

and location of the void defect is most critical. This investigation obtained the solutions for

—— "

the temperature distribution and the stress state in a layered medium with a rectangular

cavity. This temperarture distribution and stress state result when the solid medium is

v

subjected to Coulomb frictional loading from an asperity moving at a moderately high
speed (of approximately 10-15 m/s). In the analysis, the coated medium was represented
by a solid half space, with a thin top surface-layer of solid wear material. The cavity
defect required a mathematical model in terms of the material coordinates. The corre-
sponding governing differential equations were time—explicit and transient. A general finite
difference formulation was developed to calculate both the temperature and the stress
fields. The energy balance method was applied at the corners of the rectangular cavity to
The stress singularity at each

resolve the problem of singularities in the temperature field.

corner was represented by a special element that was introdt/xed representing the behavior

P
of the known stress singularity at the corner and its vicinity. The general equation of the
stress field, including the dynamic term, is of the regular perturbation type. The small
b order dynamic term is demonstrated to be a higher order effect by perturbation method,

thus negligible. Numerical solutions were carried out for the zeroth order approximation

and the case of uniform asperity pressure distribution.

It was shown that, at moderately high asperity speed, the thermal stress effect domi-
nates the combined thermo—-mechanical stress field, which eventually leads to failure in the
no—cavity case. When a defect, such as a cavity, exists, the stress state that determines the
failure phenomenon is much more severe and can be quantified depending on the location
of the cavity. These results are determined through a numerical computation based on the
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material properties of Stellitc 111. However, the parametric effects of material variations in

060

=

the coating and the substrate, including changes in both thermal and mechanical properties,

L%
A 1".}-"' -

were also considered. The study of the cavity location also established the existence of a

.Is'

LY

critical cavity location for cracking by cohesive failure. This location is defined by the

critical ligament thickness (thickness between the wear surface and the top edge of the

St

YY)

B — 24

cavity), at which the cavity—-influenced thermal tensile stress reaches a maximum. This

.’l

thickness is important to designers when cavities at coating/substrate interfaces are either

unavoidable or too expensive to control in fabrication.
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NOMENCLATURE

asperity width

substrate thickness

The dilatational wave speed of the substrate

The shear wave speed of the substrate

specific heat of the coating layer and the substrate,
respectively

distance from x, origin to leading edge of the asperity
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Young's modulus of the coating layer and the substrate,
respectively

coating thickness

thermal conductivity of the coating layer and the
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center point of the finite difference cell
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pressure over the contact area

average pressure over the contact area
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CHAPTER 1

INTRODUCT ION

1.1 Statement of Problem

This investigation studies the thermomechanical cracking in a
coated medium with a near surface cavity. Such cavity generally occurs
in the neighborhood of the coating/substrate interface, as a result of
either inclusion or poor bonding during the coating process. A typical
geometry of the cavity can be shown as in Figure 1.1. To facilitate
the analysis, this research will first study the effect of a
rectangular cavity. The general failure mechanism is caused by the
frictional excitation of a wmoderately high speed asperity traversing
over a coated surface. The understanding of this failure process will
improve the design of the modified wear surface by alleviating the
problem of friction cracking or delamination.

When two flat solids, which are placed in contact under heavy
loads, slide relative to each other, the nominal design pressure
between the mating surfaces is based upon the nominal desigh contact
area. When the contact pressure is evenly distributed according to
design, the gervice life of the solids is not a serious problem, even
at a high rubbing speed. However, at high operating speed, the real
contact area can be reduced by several orders of magnitude. As a
result, a low degign pressure may result in a very high interfacial
pressure, thus a very high dry frictional force in the real contact
area. Kennedy [1) showved that the size of the real contact area

depends on operating speed and material parameters such as thermal
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Figuwre 1.1 A layered medium vith a cavity.




conductivity and wear resistance. He concluded that decreasing thermal
conductivity, increasing wear resistance and increasing opcrating speed
will reduce the real contact area. It was shown that, for a
conservative areal ratio (contact area/nominal area) of 1073 (Burton
[2] considered 1074 as a possible areal ratio), a low design pressure
of 240 kPa (35 psi) could result in a 240 MPa (35,000 psi) local
pressure in the contact zone. The high friction would generate locally
an extremely high temperature, which was called "flash temperature" by
Archard [3]. The local contact area ig called "red banding" or "hot
spot"” [4], which has been experimentally demonstrated. In severe cases
the temperature can be extremely high, leading to cracking of the
surface [5]). This phenomsenon is called "heat checking" or
“"thermocracking”" [6]. It is frequently seen in seal rings, brakes, and
rail-vheels (7,8,9,10,11,12) &8 shown in Figures 1.2 and 1.3. 1In
general, it was observed that numerous radial cracks developed
perpendicular to the sliding direction and almost periodically along
the circumference. In order to understand these failures, in recent
years, there has been increased emphasis in finding a solution of
failure control, both experimentally and analytically.
1.2 Related Investigation in Progress

The phenomenon of high temperature "hot spot" was observed in the
experiments by Archard (3]1. A general survey of the problem of
cracking through the development of a frictional hot spot was discussed
by Burton [(4). Proof of the existence of hot patches of solid-to-solid

contact was obtained experimentally by Bannerjee and Burton {13] in the

cagse of metallic rings rotating against a non-metallic disk and, more

recently, in actual operating face seals by Kennedy (14]. The latter




AL

AP AP AR ¥

P e
b

R T

Figure 1.2 Radial hairline cracks on the metallic ring

-'-".'n’d'"

after running against a carbon ring at a high

N peripheral speed.

Figure 1.3 Thermal cracks on the brake shoe.
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study made use of a new contact probe which enables the monitoring of
contact patch sizes and locations in ring-on-ring or ring-on-disk
configurations. It was proven to be quite effective in determining the
geometry and movement of contact patches in dry operation of mechanical
face seals. In his earlier experiment (15}, Kennedy used a carbon ring
against a metallic mating ring made from 440 C stainless steel,
beryllium copper or 52100 bearing steel under both dry and liquid
lubricated conditions. In these experiments, the existence of distinct
spot asperities on the metallic ring was also observed. It was found
that the spots tend to remain stationary with respect to the metallic
mating ring of the seal, whether that ring is stationary or rotating.
However, other investigations have shown hot patches moving relative to
the mating ring and stationary on the primary ring (13,16]. Burton
{17] also reported that, for an aluminum ring sliding on a glass disc,
the hot spot precessed at a much lower speed than the rubbing speed.
The uncertainty of this observed discrepancy on the speed of the moving
asperities remains, but there is no doubt about the existence of the
moving asperities due to thermoelastic instability on mechanical face
seals. Several analytical studies of the failure due to the existence
of the moving asperities have been developed. Surface displacements,
temperature field and stress state of a convective elastic half space
under an arbitrarily distributed fast-moving line heat source were
obtained, using integral transform techniques, by Ling et al [18,19,20]
and Mow and Cheng [21). Kilaparti and Burton [22] have developed an
exact Fourier series solution for a periodic strip heat input. Their

series is rather unwieldly, but, at large Peclet number (R=Va/x), it

reduces to a form [23] that is simpler than that of Ling and Mow [181].
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:k5£i Recently, Barber [24] employed the Green's function for the problem of
&l,f Kilaparti and Burton, and obtained the thermoelastic displacements and
?E;E stresses due to a heat source moving over the surface of a half plane.
Nfgg A finite element analysis was developed by Kennedy [2S] to study the
T:) surface temperatures resulting from frictional heating in sliding
i;%; systems. He also applied finite element techniques to study the

ﬁ;ﬁ stresses in the mechanical face seals [6]) and showed that the dominant
s stresses in the seal components are thermal stresses. The surface

22; stress component (parallel to the surface) resulting from a periodic
EEE row of moving hot patches, with width 2a each, and a spacing of 2Zm was
v’ji investigated by Tseng and Burton [26). They concluded that the tensile
‘;E%E stress would appear instantaneously with each passage of the heat

E:é source. Two- dimensional models of heat checking in the contact zone
?‘\ of a face seal wvere presented by Ju and Huang [27]. Because of the
;:Eg three-dimensional aspect of those observed "hot spots", Ju and Huang
:EEE reformulated the problem in three-dimensional theory of

l) ) thermoelasticity 128,29,30]. The investigation concluded that the
X }E highest tensile stress occurs, for an asperity speed of 10-1S w/s (400-
“EE: 600 in/s), at a depth of the order of one-tenth the asperity size.

¢

‘.. This depth defines the critical depth of the material. The physical
Wy depth 18 therefore 50-100 ym. At such a asperity speed, the stresses

from the thermal effect of the asperity friction are an order of

2

- -

"?: magnitude larger than those from its mechanical traction effect. Ju
v g
: §§ and Huang (31] also demonstrated that, when asperities excite the
:fsf surface periodically in close intervals (a numerical example used a
: f spacing of twelve asperity size), the thermomechanical effects

accumulate, yet tending to a limiting magnitude, even though the
k-7 I
0
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mechanical stress dissipates with no residue effect. The cumulative
effect definitely depends on the interval of periodic excitations. At
a relatively large interval of approximately 1000 asperity size, no
cumulative effect is evident.

For improvement of the wear property of the surface, recent effort
has been directed toward surface modifications. Research to understand
the behavior of coated surfaces under asperity excitation, hence, has
gained importance. Ju and Chen [32,33] first solved for the case of a
moderately thick coating (thickness of the order of the asperity gize).
Later Ju and Liu [(34) extended the general formulation of {32,331 to
study the thickness effect of the coating layer for various mechanical
and thermal impedance matchings between the surface coating layer and
the substrate. It is concluded by Ju et al that: (i) a stiff surface
layer would result in higher thermal stress; (ii) the stress state in
layered media is influenced by the layer thickness, reaching a worst
state wvhen the coating layer thickness is in the neighborhood of the
critical depth; (iii) a substrate of lower thermal expansion
coefficient, higher Young's modulus, higher thermal conductivity and
capacity will result in lover stresses in the coating layer; (iv) for
the thin coating layer, the shearing stress at the coating/substrate
interface is by no means trivial, depending again on the surface
coating thickness. The interface shear reaches a maximum when the
coating thickness is in the neighborhood of the thermal layer. These
results are important for designing the bonding of the surface coating.

In the previous work on the moving asperity problem, the analyses
dealt with basically uniform solid wmedia; that is, the material and

asperity properties are invariant in the direction of the asperity
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motion. In such cases, since the time effect can be rendered implicit
in the Fourier and the Navier equations by using a coordinate system
fixed to the traversing asperity (called the convective coordinate
system), the resulting solutions are steady-state. However, when the
material has a cavity, uniformity in the direction of the asperity
motion no longer exists. Consequently, a coordinate system fixed
either to the cavity or to the material (referred to as the material
coordinates) must be employed. The governing equations and their
solutions, therefore, are transient. The present investigation not
only obtains the temperature field solutions but also analyzes the
stress field caused by the input of a moving heat source. In this
study, since the Fourier and the thermoelastic Navier's equations in
the material coordinates are time explicit, the finite difference
method is considered more appropriate. Although a specific numerical
solution does not show the effects of parameters, a general trend of
the parameters effects can be obtained with adequate numerical
solutions for a series of given parametric values.
1.3 General Theory

The phenomenon of thermomechanical cracking, as observed from
experiments and operational damages, is connected with relatively hard
materials; such as cast iron and Stellite III. Blau [(35] and Ruff and
Blau (36]) demonstrated experimentally that the plastic wear and surface
shear for hard wear material are restricted to a very thin surface
layer (about 4~8p). Ju et al [(27,28,29,30,33,34) also proved that the

critical depth is at a depth of an order of magnitude larger than

plastic depth. Therefore, the linear thermoelastic theory holds. The

basic mathematical formulation of uncoupled thermoclasticity consists
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of the following equations:
pV2u + (A\+p) grad div u = (3\+2y) a grad T = pa (1.1)
and kV2T = pcT (1.2)

where T and u are temperature and displacement fields, respectivity,

k is the thermal conductivity, p is the mass density, c is the

specific heat, A,y are the Lame constants, and a is the coefficient

of thermal expansion. The coupling term is negligible except for
conditions in which the temperature distributions have sharp
variations in their time histories, which often occurs during the
propagation of thermoelastic waves in the aftermath of thermal shocks
(37,38,39,40,41,42). For the current problem, since the asperity speed
under consideration is much slower than the elastic wave speed, the
uncoupled thermoelastic theory is applied.

The dynamic effect may result from either a dynamic loading state
or a non-steady thermal state in which the time rate of temperature
change could keep up with the stress waves in the material. Duhamel
(43) stated that the inertia term can be disregarded if the tin; rate
of change of temperature is slov enough. Parkus [44) showed that the
significant effect from the inertia term can arise only when there is
an instantaneous change in the gurface temperature or in the
temperature of the surrounding medium. In fact, the dynamic effect is
greatly reduced if the temperature change occurs in & very short, but

finite, interval of time. This was confirmed by Danilovskaya [45,461],

vho studied the dynamic effect due to a thermal shock on the surface of
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a half-space and demonstrated that the maximum dynamic stress is

reduced to 86Z even for the extremely short duration heating of 10712

seconds. In general, under usual conditions of heat exchange, the rate
of temperature change is small in comparison with the speed of sound in
the material. Thus, at any instant, the thermal stress state can be
determined by the instantaneous values of the temperature field.

For the cavity problem, the effect of the dynamic term in Equation
(1.1) will be studied quantitatively with a perturbation method. That
is, the solution to Equation (1.1) can be expressed in an asymptotic
gseries. Substituting this series into Equation (1.1) leads to a set of
linear equations for u. Each get of linear equations represents a

different order of solution of the asymptotic series. The details of

the perturbation procedure will be addressed in Chapter 4.




CHAPTER 2

ANALYTICAL MODEL AND BASIC EQUATIONS

The experiments performed by Kennedy [47] have shown that contact
between two flat conforming rings is concentrated in several.(i to 5)
patches, with a few small solid-solid contact spots occurring within
each patch. Each contact spot is identical and the contacts are
equally spaced around the ring circumference. A ring could therefore
be divided into as many sections as the number of contact spots and
only one such section would have to be analyzed. Kennedy [(15] also
proved that the width of the contact spot (asperity) is about 0.1 to 1
mm (0.004 to 0.04 in.); however, the size of a typical mating ring is
several orders of magnitude larger than the asperity size. Because of
this size difference between the contact area and the mating rings, the
analytical model is represented by a semi-infinite body with a thin
coating layer and a rectangular cavity in the neighborhood of the
coating layer/substrate interface. The half space surface i8 subjected

to the frictional heating of a moving asperity over the wear surface

(Figure 2.1), and the material coordinate system (fixed to the cavity)
is used. As presented in Chapter 1, the linear thermoelastic theory

applies for the current problem. The advantage of the linear theory is

~™

the application of the superposition principle, which allows a
separation of the stress field to a contribution of the mechanical load

of the pressure and friction from the moving asperity and another

contribution of the heat input from the rate of the frictional energy

dissipation. The combined effects will then determine the possibility
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? of fracture initiation. The governing differential equations for the
K4
f temperature and the stress fields are the Fourier equation and the
B
.§ thermoelastic Navier's equation, respectively.
B
2.1 Tewperature Field
. &
" The governing equation for the temperature field is
K~ |
\ i
o 2 af 2 Y arP
N + = .1)
:. &;(kssx—i) ggz(ksa-x—z) "BCB"’E_ (2.1
‘i
: where T 18 the temperature; k is the thermal conductivity; p is the
e
. mass density; c is the specific heat; and 8 denotes the layered
>
region: I for the coating surface, II for the substrate.
k.
n The temperature field T must satisfy the initial condition,
N
v 8
T (x,,x,,0) = 0, (2.2)
K
«
]
h and the boundary conditions:
i ©®
. (1) The regularity condition holds at infinity (x, 2+x,2+=),
:g
P
b
4 L (2.3)
X
L)
7‘ (11) In the asperity contact surface (c(t){ x, < c(t)+a, x,=0), the
K
« maximum heat input through the boundary is the rate of the frictional
a ¢
2 energy
".
1%
% a.l.l
n 1 ]
! - kl &x; =a- usp (x,), (2.9
;‘(F
i vhere Ve is8 the Coulomb coefficient of friction; V is the asperity
W
.
i
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"y velocity; p'(x,) is the pressure over the contact area; q is the heat
igs)
{ flux through the contact area; and c(t) is the distance from x,
LI

’{:t origin to the leading edge of the asperity.
".';'{; (111) Outside the contact surface, x, < c(t) or x, > c(t)+a, x, = 0,
'A..-

t the convective heat loss, being of small order, is neglected without
{E loss of generality,
-

L 1

- g-;—z- = 0. (2.5)

R
b r:
: ) (iv) At the coating layer/substrate interface, x, = H, the continuity
A

] conditions hold

5

w

-
o =1, (2.6)
‘F'
. 1 11
A T _ oT

~'u
.

) vhere H is the layer thickness.
W

L3
."I" (v) Adiabatic conditions at cavity boundaries,
&
b
o -

| gx—2=o, at -d ¢ x, ¢ d, x; = L' (2.8)
i "
.
:‘;,. x, = 0, at =d { x, ¢ d, x; = L'+e (2.9)
JOR
-y,

"y g-}’i— =0, at x, =d, L' ¢ x, { L'+e (2.10)
¢ ':
e
f".o aTB
I x"—=0, at x, = -d L' ¢ x; ¢ L'+e (2.11)
R
@
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5
)
o

®
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vwhere d is the half width of the cavity and e is the depth of the cavity.
The region between the cavity and the wear surface, which is important in
determaining the magnitude of the temperature field and the stress state,
shall be designated descriptively as the ligament region. The distance
between the surface and the cavity top edge is therefore the ligament
thickness L' (see Figure 2.1).

2.2 NMechanical stress field

The elastic Navier's equation and the Hooke's law equation are

2 (X auﬁ ) 8 (v aue ) 2 (Vv ——g )
—— B ¢ - B_ +* =
ax, ax, axJ ) oxJ B a
32u3
Pg acz . 1,5,k = 1,2 (2.12)
d A =8 < auﬁ ) ( auf ffg ), 1,9,k =1,2 (2.13)
n = —— —_— ’ v JoK =1, .
a ij B "ij  ax + HB axJ * axi J

where u, and u, are the displacements in x, and x, direction,
respectively; o,,,0,,,0,, are stress components; \ and y are the Lame
constants; and 61 18 the Kronecker delta. The summation convention is
used for all repeated indices of Roman minuscules.

The mechanical stress field is initially homogeneous.

The boundary conditions are:

(1) On the contact surface (c(t) ¢ x, { c(t)+a, x, = 0), tractions

are prescribed by

'(x,), (2.14)

03, = =P'(x,). (2.15)
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(1i) Outside the contact area, the region given by x, < clt) or

x >c(t)+a, x, = 0, the surface tractions are identically zero:

0,5 = 0, (2.16)
I .
0z, = 0. (2.1

(111) The regularity conditions hold at infinity (x,2+x,2+e),
ug = 0, (2.18)

ofj = 0. (2.19)

(iv) At the coating layer/substrate interface, x, = H, the

continuity conditions are

1 11
= .20)
u1 u1 . (2.20
1 _ 11
012' 012 . (2.21)

(v) The cavity boundary is traction free; that is,

A=, -0, st -dex <d,x, =L (2.22)
B2 b, =0 at-dcx, cd, x, =L (2.23)
BB, =0, st x, =d,L (x, <L (2.24)
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of‘ = oez =0, at x, ==d , L' ¢ x, ¢ L'+e (2.25) 1
2.3 Thermsl Stress Field

The thermoelastic Navicr's equation is

8 8 (]
P du ? du ? du
—_—_ XB k )y + — ( HB ) ¢+ — ( UB __1— ) -
axi axk axJ axJ axJ ax1
3 a2ug
- 5;: { (3\B + ZuB) “B (T-Ty) 1 = PB 3tz ° i,j,.k = 1,2 (2.26)
and the Hooke's law equation is
8 8 B
du ou 3u
=a, 8 (2 )4y (L 4+ -
i) B 1y ox 8  9x ax
k 3 i
- (3, + 2u.) a, & (T-T,) , (2.27)
B~ “¥g' % 1y 0

where & is the coefficient of thermal expansion, T and its derivatives

are derived from the temperature field.

The initial conditions for the thermal stress field are

B xyx,,00 = 0, (2.28)
o, x,1%z,00 = 0. (2.29)
The boundary conditions are:
(1) The surface, x, = 0, 1s traction free, i.e.
1
0,, = 0, (2.30)

-41T=-
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I
0,, = 0. (2.31)

(1i) The regularity conditions hold at infinity, x12+x22+0, i.e.
uf =0, (2.32)
og.= 0. (2.33)

J

(111) Continuity conditions hold at the interface, x, = H, i.e.

u = u , (2.34)
i i
1 _ 11

012 = 012 . (2.35)

(iv) The cavity boundary is traction free, i.e.
B,=h, =0, at-dex ¢d,x =L (2.36)

L'+e (2.37)

»qw
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N
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o
[ ]
(a4
]
[« 9
A
x
(3
A
[«
»
N
ft

oe, = 0%2 =0, at x, =d , L' ¢ x, ¢ L'+e (2.38)
°E: = oez =0, at x, = ~d , L' ¢ x, ( L'+e (2.39)

The solution techniques and the numerical results of the

temperature and the stress fields shall be given in Chapters 3 and 4.
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CHAPTER 3

TEMPERATURE SOLUTIONS

Since a high temperature and its gradients are the source of the
high thermal stresses, which can lead to the thermocracking of the wear
medium. Therefore, it is of primary importance that a temperature
solution is available. The governing equations in the dimensionless
form are as follows:

In the coating layer, 0<n<D, denoted by the superscript I,

3zg! . 82! !
In the substrate region, D<(n<w=, denoted by superscript II,
32911 29Il Y 18
L2 + anZ = Rn a7 ° (3.2)

wvhere QB(=TBkI/q°a) is the dimensionless temperature; (g,n)=(x,/a, x,/a)
are the dimensionless coordinates in the direction opposed to the
asperity motion and the depth direction, respectivelv (as shown in
Figure 2.1); t=(Vt/a) is the dimensionless time; D=H/a is the
dimensionless coating thickness; RB=(Va/xs) are the Peclet numbers in
the coating layer (B=I) and in the substrate (B=II); q, is the average
heat flux through the contact area; and T, K, x, a, x,, X,, V, ¢, H are
the same as defined in Chapter 2.

3.1 Difference Forgulation

Becauge of the analytical complexity of the mathematical model, the

R R R R ]
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explicit finite difference metliud is employed to solve the current
problem (48,49,50,51,52,53,54,55,). A brief discussion of the finite
difference method is given in Appendix I. In the finite difference
method, the gsemi-infinite body is replaced by a sufficiently large
rectangular region (Figure 3.1). A central difference is used for the
space derivatives, and a two-point forward difference is used for the
time derivative of the first time step, then a three-point forward
difference is employed for the following time steps. The reason for
using the three-point forward difference after the first time step is
that it is more accurate than the two-point forward difference. But,
for the first time step, we have information only on one previous time
line (initial condition), and, therefore, only the two-point difference
formula may be used.

The governing differential equations in the difference form are:

In the coating layer

¢' (1,9, = r #T(-1, 5,00 ¢ (1 - 2er, + r 1871, 5,01 +

r @' (1+1,3,n-1) + r 8 (1,3-1,n-1) +

+

r, 8 (1,341,n-1), n=1  (3.3a)

TS %SYY
"H'l‘l'
¢Fﬁﬁﬁ§54.
+

and

hee

£
LAY

(-#%c1,3,n-2) + 2r, #7C1-1,5,n1) +

W=

#'1,5,m =
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+ 2r, 871, 51,01 + 2r,87GL3+n-] , M1 (3.3
In the substrate
¢ 1,3 = 02r, 07 Gm, g, ne1) ¢ 01 - (20%r,4202r,) 107 T4, a0 1)e

+ 02r " (141, 5,01 + Q2r, 87001, 301,01 +

o
o 2r 1!

P + Q%2r & " (41, 3j+1,n-1) , n=1 (3.4a)
o

)\

and
1
o', 3, = 3 -#'1(1,3,n~2) + 202r $"7(i-1,5,0-1) +

+ a1 - Q2r, - Q2r e (1, 5, n-11+202r 71 Ciet, j 010 4

+ 202r,8 11, 3-1,n-1)4202r 87T (4, 341,011, n>2 (3.4b)

vhere rl=At/(RI°AEZ), r2=At/(RII-An2), 02=x11/x1. and (1,j,n) denotes
the two spatial indices and the time step, respectively. For the
explicit scheme, the time step At must satisfy a stability criterion.
The most commonly used method of stability analysis is Von Neumann's
method [48,50,54,55). In this method, a finite Fourier series
expansion of the solution to a model equation is made, and the decay or
awplification of each mode is considered geparately to determine
stability or instability, as we now demonstrate.

Consider first the difference form of Equation (3.1) of the
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coating layer

# (i, 3,01 + r, (8 Ci-1,3,0-1) - 2¢7(1,3,0-1) +

o,y

e G, 3,0+ 8L -1, ~ 28701, g0

+

i1, 3+1,n-1)3 . (3.5)

+

Each Fourier component of the solution is written as

#1(1,9,n) = vneJxE(ibi)ean(iAn) , (3.6a)
where V" is the amplitude function at time-level n of the particular

component whose wave numbers are l(E and Kﬂ in £ and n directions and

J=y-T . 1If °=KEA£ and ¢=KnAn we obtain

$1(1,4,m = V(18738 (3.6b)

Substituting Equation (3.6b) into Equation (3.5) gives

vneJ(10+J¢) - vn-leJ(10+j0) . r‘lvn-aeJ[(i'x)0+j¢]-2vn-1eJ(19+j¢)*
. vn’1eJ[(i*t)0+j¢]] . rztvn-erlieﬂj-l)Q] _

\\

\

N

i‘(‘ - zvn-ae(10+30) . vn-teJ[19+(j*1)¢]} . (3.7
"

3 J(10+3¢)

Canceling the common term e gives

S N e i ool
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Using the identity e” +e =2cos® and 2sinZ(6/2)=1-cos®, Equation

(3.8) becomes

- 6 ¢ -
n o_ 0~ _ P P AR o
V' =GV = {1 Qrislnz(z) 4r251n2(2)}v . (3.9)

where G is the amplification factor. Equation (3.9) shows clearly
that, if solutions are to remain bounded, we must have IG|<1 for all 6

and ¢. This is the gtability criterion for the heat conduction

equation.

For 1GI<1, we have

L) ¢
117 - 4risin2(§) - 4rzsin2(§)l <1, (3.10)

vhich is true only if

0
Ar‘sinz(i) + 4rzsin2(§) < 2. for all 0, ¢ (3.11)

The stability requirement is then

1
ry*+rzt35 (3.12)
or
At 1 1 1 (3.13)
— (= + — - . .
R Cacz*anz’ iz
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Similarly, the equation for the stability criterion for the substrate

is
2 1
Q (rg +1ry )¢ z (3.14)
or
Q24T 1 1 1
¢ aEZ + BnZ ) € 2 - (3.15)

1

If Q2 is less than 1, Equation (3.13) is the stability criterion;
otherwise Equation (3.15) is the gtability criterion for the current
problem.

Based on previous results in references [28,29,30,31,33,34,35), ve
know that high temperature and high thermal stresses occur in the
region near the asperity. Therefore, in that region and in the region
near the cavity, a very fine wmesh must be used to calculate accurate
solutions. In the regions far away from the asperity and the cavity, a
relatively coarse mesh can be used to save computing time. This non-
uniform mesh can be transformed to a uniform mesh by using the general
coordinate transformation proposed in references (54,55,56]. The non-
uniform mesh and general coordinate transformation are discussed in
Appendix II.

The heat conduction equation (3.1) and (3.2) in the transformed

plane (E,E) can be written as

(A,ng - 2n 88 e af . A4§§ + Asog 1132 = R

8
¢, g=I,1I (3.16)
En nn B
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where J=EEn- - E-nE is the Jacobian of the transformation, the
n n
subcripts (E.n,E.ﬁ,t) denote partial derivatives in those coordinates

and time, respectively, and

A, = E.2 + n.2, (3.17)
n n
A, = E_.E. + n_n_ , (3.18)
2 En En
Ay =E_2+1n.2, (3.19)
4
A, = (E_A; = n-A /D, (3.20)
4 '\1 ns
As = (n_A, = E_AN/T (3.21)
S E6 E’l
A, = AEae = 2A,E-- + AE._ , (3.22)
¢ g tn - %'mn
Ay = Ano_ =~ 2A,N_- ¢ AN . (3.23)
TR 2% °'m

In the coating layer, the transformed heat conduction equation
(3.16) in the difference foram isg

At

R

#fc1,3,m = #¥d, 3,010 + — AA, n=1 (3.24a)

a;
E I

> &
Ay L

1 1 1 1 257
¢ (1,3,n) = 3 {9 (1i,j,n=2) + 4¢°(1i,},n-1) + = AA} , n>1 (3.24b) |
I !

2,

1
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((A,/7882) (#%i-1,9,n-1) - 28" (1,3,n-1) + #T(1¢1,9,0-1)) -

z

(A, /26E80) (87 (141, j¢1,n~1)-#T (141, 3-1,n-1)-#T(1-1, J+1,n-1) +

' (1-1,3-1,n-1)] + (Ay/6n2) (871, 3-1,n-1) - 26T(1,5,n-1) +

+

o1 (1, 3+41,n-100 + (A/280) (#T(i41,3,0-1) - 71, 5,0-100 4

+

+

(Ag728m) €8T (4, 3+1,n-1) = #T(1,3-1,n-102)/02 . (3.25)

In the substrate, the corresponding difference form of Equation (3.16)

is given by
It II 4t
¢ d,3,n =& 71,j,n"1) + R A, n=1 (3.26a)
11
11 1 11 11
¢ 7(1,3,M) = 3 (- "(i,3,n-2) + 4% " (1i,j,n-1) +
2407
+ §“ AAA] , m1 (3.26b)
11
vhere

AMA = ((A,/78E2) (8*T(i-1,3,0-1) - 287 (1, 3.0-1) + 9P (a4, g,0-10) -
(A/ =Pt 11 11 11
-(A,/20080) (8T (141, J¢1, n-1)-0" (141, 31, n-1)-0" T (11, 3+1, 011+

+#77(1-1,5-1,0-1)1 + (Ayzan2) (8774, 5-1,n-1) - 20%01, 3,014
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+11 01, 541,011 + (A /280) (4770101, 5,00 - #7TCam1, 501000
+(Ag/20m) [#%1¢1, 3¢1,n-1) - #70(4,3-1,0-1033/02 . (3.27)

At the outer boundaries of the rectangular region (excluding the
surface), 08(1.1.n)=o is the nominal value. The remaining conditions,
on the surface, the cavity boundaries and at the interface, will be
incorporated with an energy balance scheme.

3.2 Energy Balance

The cavity boundaries, the moving asperity and the interface of
the medium are taken care of with the use of the energy balance
method [57).

(1) Energy balance at the interface (see Figure 3.2)

For material I (coating layer), the heat fluxes toward the central

point P of the element at the interface from material points W, R and S

in the coating layer are

T(i-1,3) - T(i, ¥

= . )

Qusp = k (8y/2) & , (3.28
T(i+1,3) - T, 3)

Qpap = kI(Ay/Z) &, . (3.29)

Ax,*sz T(1,3-1) = T4, 30)

Qs+p = kl( 2 ) By ' (3.30

where Q is the heat flux, indexed by the direction.
For material II (substrate), the heat fluxes toward the point P

from material points W, R and N in the substrate region are

/ -28-
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Figure 3.2 Energy balance at the interface.
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T(i-1,3) - T(i,§)

Quop = kxx(AYIZ) &, , (3.31)
_ " T(i+1,3) - T, )

Q‘*p = kII y/2) sz ’ (3.32)
_ Ox, +Ax, T(i,3+1) - Td4,§)

Qgap = kII(-—li——Z) & (3.33)

The total heat flux going to the interface point P(i,j) is

T(i-1,3) = T(1,3)  T(i+1,3) - T4, §)
+ ]+

Quum = (k, *+ k) (8y/2)1 . -
Ax +6x, T(i,3-1)-T4,3) Ax +Ax, T(i,3+1)~T(1,§)
1 2 ] 1 2 M
+ k (——%) & ¢k (——% By .(3.34)

The rate of change of internal energy U in the time interval At at the

point P(i,j) is

Up = Uip + Upp

Uo= « . [ (Ax.+Ax )AY ] T(i,3,n-~T(1,3,n-1)
P= (PyCy*Py ! (8%, ¥ At , n=1

(3.35a)

8y _ 3T(i,j,n)=4T(i,J,n=1)+T(4,3,n~2)

( = + -_—
Up (pxc1 plxcll)[(Ax1+Ax2) a ] 288

n>1 (3.35b)

Conservation of energy requires that the algebraic sum of the heat
flowing into the point P 18 equal to the rate of change of internal

energy at the sawe point (Q.u‘=ﬁp). From conservation of energy, one
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can obtain the equation for the continuity condition at the interface

point P(i,j) at the time step n.

T(i,3.,n) = T(i,J.,n=1) + AA, ., n=1 (3.36a)
1
T(i,j,n) = 3 (-T(i,j,n=2) + 4T(i,3,n"1) + 2AA,] , n>1 (3.36b)
where
AA a { 25*K1)  ra-1, 5ot = Te4, Jonm1D) 4
1 2 -1,),n"0) = % Dl Ly
e &% +ax,8x;

AX‘AXZ*AXZZ T(1 1.1."‘ (1,1,“ 1)) Ayz ’ T i, N

2k
- T4, §,n~1)) + Ay;‘ [T¢i,§+1,n-1) =~ T(1,3,n-1)1) . (3.3

Equations (3.36a,b) in dimensionless form are given by

®(1,3,n) = §(1,3,n~1) + AN, , n=1 (3.38a)

(-#(1,3,n=2) + 4%(1,j.,n"1) + 2AA,) , n>1 (3.38b)

[A TN

#(1,3,n) =

vhere

24t (1+m,)

AA, = { —=— (#(1-1,3,n-1) =~ &(i,3,n=1)] ¢+
2 " R MR BE AL OL,

(1+n,)

—ee 1
* &‘&2*&22 [.(141|19n"1)‘.(1,].n'1)] + A_nz [.(1'1-1",_1)-

O o o |
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n
-$(1,3,n-1)] + KE% [#(i,j+1,n-1) - ®(i,3,n-DI , (3.39)

where n, = ku/kI .

Details of the energy balance method on the other boundary
conditions are given in Appendix III. The dimensionless form of these
boundary conditions are listed below.

(11) Energy balance on the cavity boundaries (see Figure 3.3)

On face AB:

1,5, = ¥, 3,010 + AA,, n=1  (3.40a)

3.0 = % (-#7(1,7,0-2) + a#T(1,5,n-1) ¢ 2AA5) , X1 (3.40b)
where

AA, = %5 (16T (1-1,3,n-1) - 2671, 5,n-1) + #7441, 3,n-1)1/BE2 ¢

I
+ 20871, §-1,n1) - #7(1,3.n-1)1/8n2] . (3.41)

On face AC:

01, 5,m = 11, 5,01 ¢ AR, n=l  (3.42a)

i, = % =477, 5. n-2)+a87 11, 3, n-1)42A0,1 , w1 (3.42D)
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Figure 3.3 Energy balance on the cavity boundary.
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&4 Rxx A£2 L * ’ L
¢ —r (@ %1, 5-1,n-1) - #11i, j0m) 4
8n,2+4n,8n, '
o — 2 M4, y¢1.0-1) - #75C1, 50D (3.43)
Bn,Z+8n, n,
On face BD:
11, 3,0 = @M, g ¢ AA n=1  (3.44a)
11, 1 11 11
PR TN Et L PR R o AR U SR P BAC FU R (3.44b)
where
200 1 qp -
AAg = ﬁ:; { a2 (¢ "(i+1,3,n-1) - & " (i, 3,n1)] +
- —— o', 51,0 - # g0 e
n,2+4n,4n,
1 11 11
¢ —————— (#7101, 341,0-1) - #77(1,3.0- 1) (3.45)
Bng%+8n,4n; ) )
On face CD:
#1011, 5.m = 14, 5,01 + AAg n=1  (3.46a)
11 1 11 11
PR IR O S FUE N AR U SR AL DA PRI (3.46b)
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wher
At
Mg = 2 (e i-1,j,n-1 - 26"7¢i,j,n~1>) + #TT¢i+1,3,n-1)1/8E2 +
II
+ 208" 1, j+1, 0o - #70L j0m 1) (3.47)

(111) Energy balance at the corner of the cavity (Figure 3.3)

The points at the four corners of the cavity are singularities,
because at each of those four points there are two boundary
conditions, 9T/3x, = 8T/3dx, = 0, with only one unknown T. However, by
applying an energy balance scheme, one can resolve such problems at

the corners. The dimensionless form for the corner points are:

Corner A:
(i, j,n) = ¥i,j,n=1) + AA, n=1  (3.48a)
1
$ci,5,m = 3 [-8(1,),n-2) + 4833, J,n"1) + 2AA;] n>1  (3.48h)
where
At 1+n, )
AA, = R 72+ R Ta { 2 {&(i-1,j,n-1) - &(1,j,n~1)]1/AE2 +
I k II

1 n
+ 5 (#0141, 5,001) =~ &(4,3,n"1)1/0E2 + E![Q(i.j+1,n-1) -

- &(1,j,n=1)31/8n2 + (&(i,j-1,n-1) - &(i,j,n-1)1/48n2} . (3.49)
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Corner B:
i, j,n) = ®i,j,n-1) + AA, n=1 (3.503a)
1
$Gij,m) = 3 [-8(1,5,n"2) + 48Gi,§,n"1) + ZAAg] , n>1  (3.50b)
where
1Y ¢ 1 . 2
AAy = R 72 +nR /4 (2 ($(i-1,3,n-1) - &(i,j,n-1)1/0EZ +
1 k II
1y My
* 3 (é(i+1,j,n-1) - &(i,j,n-1)1/0E2 + 7 [(&(i,j*1,n-1) -

- ®(1,j,n-1)1/A8n2 + (&(i,j-1,n-1) - &(i,3,n-1)1/8n2} . (3.51)
Corner C:
' i, 3,m = ¢, 3,0 + AAg n=1  (3.52a)
I, . 1 I, 11
& (i, j,n) = 3 (- "(i,3,n=2)+4% " (i,j,n-1)+2AAg) , n>1  (3.52b)

wvhere

-4

14
281, g.n-1) - 3670, 3,n-1) + #1Taiet, 5,010 /082 +

AAg =
RII

[AYN ]

+ 77(1,3-1,n-1) - 30771, 3,n-1) + 267701, 341,0-1)1/802). (3.53)
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Corner D:

e 51, ,m = T g, 4 AA n=1  (3.54a)

I11,. . 1 11 II

é "(i,j,n) = 3 (-7 (i, j,n~2)+4¢ (i,3,n-1)+2AA 1 . m1 (3.54b)

where
_24at o 11, 11, 2
Mo = 3 g [T 701, 4,0~1) = 3¢77(1,3,n"1) + 28" (141,3,n"1)1/AE2+
II

+ ("0, 371, n-10-38"T (4, 3, n-1)+28 T (1, 341, n-1) 17802} . (3.55)

(1v) Energy balance on the surface boundary (the moving asperity)

The dimensionless form for the surface boundary condition is:

AT
i, 1,m = #7(1,1,n-1) + (1+h’ ’E’K‘ + A, n=1  (3.S6a)
1 1 1 1
® (i, 1,n) = = [-87(1,1,n=2) + 4 (i,1,n=-1) + (1+h") + 2AA,.] ,
3 RIAn 11
n=2 (3.56b)

~ vhere h'=h/(&x/2), h is defined in Appendix III, and
Y
S .
Q‘ T 1 1 1

AAyy = - [T G-, 1,0m1) - 287 (1,1, n=1) + &7(1+1,1,n-1) J/B8EZ +

X
L2
o
o + 2071,2,n-1) - #7(4,1,0-121/802) . (3.57)
t,l
E Equations (3.24, 3.26, 3.38, 3.40, 3.42, 3.44, 3.46, 3.48, 3.50,
W
w
"
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3.52, 3.54, 3.56) constitute the general formulation of the problem
with a complete set of difference equations for the solutions of the
discrete temperature field {9(i,j,n)} at some specific time. The
computer programs which are used to compute the temperature field
solutions are given in Appendix IV.

3.3 Mumerical Results

Numerical results are obtained by using the non-uniform rectangular
mesh corresponding to different cases of material properties and
geometry. For the surface layer of silicon carbide, kl=1.047
J/cm.9C.s, xl=0.49 cm?/s, and c1=712 J/kg.9C. For the substrate of
aluminum, ka=2'°2 J/cm.OC.s8, x11=0.961 cm?2/s, and c11=917 J/kg.oC. The
other numerical parameters on the asperity and the cavity are: v=15
m/s, w=10a, H=1.2a, b=1.9a, d=0.3a, e=0.5a, a=imm, the smallest Af and
An are 0.02 and 0.01 respectively, and A4t=0.01. In the limiting case
of no cavity, the maximum dimensionless temperature at the surface of
the coated media was found to be 0.124 by using the Fourier transform
method [33, 34]). The result at the same point by the current finite
difference formulation is 0.123. The error is less than 1Z. The
numerical scheme is therefore confirmed by the benchmark problen.

The solutions for a single material with and without a cavity would
then be compared with two limiting cases. For the first case, the
cavity is located entirely in the surface layer, Figure 3.4a. In the
second case, the top edge of the cavity is at the layer/substrate |
interface, Figure 3.4b. The solutions for the single material without
and with a cavity are designated as the third and the fourth cases,
respectively, included for the purpose of comparison. Different cases

of the tempecrature field solutions are given in Table 1. In Case 1,
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case

1A

1B

1C

1D

1E

Z2A

2B

2C

2D

2E

¢ Base materials for the coating layer

1kI

ik

1k

(pc)I
1(pc)I
1(pc)I
-(pc)x
-(pc)I
1(pc)I
1(pc)I
1(pc)I
1(pc)I
1(pc)I
1(pc)I
1(pc)I

1(pc)

Table 1

(pc)I
1(pc)I
1(pc)I
1(pc)I
1(pc)I
1(pc):
1(pc)I
2(pc)I
—(pc)I
~(pc)I

1(pc)I

I

I

I

I

I

I

I

carbide and aluminum, respectively.

K L
II
1x 0.04
I
1k 0.06
Il
1KII 0.04
1KII 0.04
ik 0.1
II
1KII 0.04
1k 0.04
1
1KI 0.04
ZKI 0.04
2x 0.04
I
0.04

and the substrate are silicon

e e e B AL TR YRR TR TR Calh ~al tal vl Sl ual Sak ok b Soll ol Sl 2ok aof dol ol Sl Sl ol &0 shh andl el fad A4 S Aol b Sk o

cavity location
coating layer
coating layer
coating layer
coating layer
coating layer
interface
interface
interface
interface
interface

no cavity

gingle material




AT e A AW S WY W T W T TR TR TR RN N WY U WY WO WY WU WO WV T O T YU VIO ST WY

(a) cavity is in the coating layer

(b) top edge of the cavity is at the interface

Figure 3.4 Mmerical exsaples vith different cavity J
|

position.

-840~

A



L
v
»
v
4
e

R AR AR SRR SRS et L IRe i " St i A0

ARe Ale Ala A0n Ala A, _ o Aos Sis A%a Ade 4 T R T TN TN Y W WY P T W YT W AT WA

three different values of the ligament thickness: 0.04 (Case 1A), 0.06
(Case 1B), and 0.1 (Case 1E), are used to illustrate the effect of the
ligament volume. The temperature fields at two depths, for all three
Cases 1A, 1B and 1E are shown in Figure 3.5. In the figure, the cavity
width is from £=1.6 to 2.2. The asperity position, at the dimension-
less time t=1.04, respresenting the worst casc, is from £=1.2 to 2.2.
The relative positions of the asperity and the cavity is shown in
Figure 3.6.

The Case 1A then is compared with Case 2 of the same ligament
thickness for which the top edge of the cavity is at the layer/
substrate interface. The effect of the relative position of the
cavity to the interface is shown in Figure 3.7. It is noticed that
wvhen the top edge of the cavity is at the interface, the temperature
field in the region immediately on the trailing edge of the ssperity
will be affected by the substrate material.

The effect of the heat capacity and thermal conductivity of the
surface layer for Case 1A is shown in Figure 3.8. The figure shows
the original value as Case 1A. Case 1C represents a reduction of
thermal capacity of the surface layer by half. Case 1D shows the
result of an increase in thermal conductivity of the surface layer by
15Z. The thermal conductivity of the surface layer is shown tolhave
little effect on the nondimensional surface temperature. But the real
temperature field, T=q°a¢/kr, is lovered with increasing thermal
conductivity kx'

Figures 3.9 and 3.10 illustrate the effect of a cavity on the
direction of heat flux. The figures show the nondimensional heat flux

components in £ and n directions of a single material without a cavity
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Figure 3.6 The relative positions of the cavity and the

asperity at v = 1.04.
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(Case 3) and a layered medium with a cavity (Case 1A). From the
figures, it is observed that, with no cavity, the heat flux at £=2.2,
and n=0.04 has a magnitude of 0.7 at an angle of 820 to the wear
surface. With a cavity, at the same location, the magnitude is
increased to 1.5 at an angle 239 to the wear surface. Hence, the
existence of the cavity wiil increase the heat flux tremendously,
especially in the E direction near the upper trailing corner of the
cavity. Figures 3.9 and 3.10 demonstrate not only an increase in
magnitude of the heat flux, hence the temperature gradient, but also
the flux at a more oblique angle to the wear surface.

Ju (28] has studied the effect of thermal properties of a single
material subjected to the high-speed asperity excitation. It was
pointed out that thermal conductivity (k) and thermal capacity (pc) are
the parameters controlling the temperature field. For layered media, a
similar effect was found by Ju and Liu [351. For the case of a layered

medium with a cavity, the thermal property variation in the coating

layer can be accordingly extrapolated. It is the effect of the

&Y

substrate in the neighborhood of the cavity that would be influential

bR

2

in determining the temperature field in the critical region. The

-",f

E:. effect of thermal property variation for the substrate is tuerefore
"

Is studied nuwerically for the Case 2, for which the coating,substrate

E: interface is at the top edge of the cavity. For this case, the thermal
5

Ei: properties of the gsubstrate will be of immediate influence to the

3;; temperature field in the vicinity of the top trailing corner of the

E: cavity. For the purpose of demonstrating the individual effect, a

L]
- s s & a

benchmark case is chosen for comparison in which both the coating and

“»
-

¢l

ALVALAAS

the substrate are of silicon carbide, (kl=kxl=1.047 J/cm.9C. s,

kT B B e T 2
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=p =2.137 J/cm3.C), designated as Case 4.

= = 2 =
K Kt 0.49 cm?/s, £,

C
I 11 11

Figure 3.11 illustrates the temperature field near the top surface and
at the coating/substrate interface for cases with marked changes in
thermal properties from those given in Case 4. Case 2B shows no change
in the substrate diffusivity, but both the thermal conductivity and the
thermal capacity are doubled. The ensuing improved conductivity and
capacity in the substrate allovw a gignificant heat flow into the
substrate; thus a high temperature gradient is also found. The Case
2C, at the same diffusivity, but with both the thermal conductivity and
the thermal capacity halved, shows a reduced heat flow into the
gubstrate, with a corresponding low temperature gradient. Cases 2D and
2E, with doubled diffusivity, but with half capacity and double
conductivity, respectively, showed reduced and increased heat flow into
the substrate, respectively. The heat flux, being proportional to the
temperature gradient, is illustrated in Figures 3.12 and 3.13 for the
surface region and at the interface.

Figure 3.14 shows the transient temperature for Case 1A (cavity in
the coating and ligament thickness of 0.04) in comparison to the case
of a single material without cavity (Case 3). Tiie dimensionless
temperature, ¢=Tkxlq°a. plotted against dimensionless time, t=vt/a, at
the gurface and at the ligament depth, n=0.04, for the position £=2.2,
where the temperature is maximum 1in the vicinity of the cavity. It is
gshown that, before the asperity reaches the point, the temperature is
low. Then the surface temperature increases and reaches a maximum
vhen the asperity just passes over the trailing edge of the cavity.
After the passing of the asperity, the temperature at the trailing

corner of the cavity drops again.
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CHAPTER 4
STRESS SOLUTION

Ju et al [28,29,30,31,32,33,34] established that, for a moderately
high-speed asperity excitation, the thermal stress effect dominates the
stress field and eventually leads to failure in the no-cavity case.
Liu (S8] in his thesis also showed that, if the asperity speed is
larger than 0.127 m/s (5 in/s), the thermal stress dominates the
failure, and the mechanical stress becomes less important. However,
the mechanical stress may not be trivial when a cavity exists.
Therefore, both the mechanical and thermal stress field will be
presented in this chapter.

The thermoelastic Navier's equations and the Hooke's law in

dimensionless form are:

? N 2 3 ovB 3 avB 2 auB
at Niag) * 5t Mg *an Nage an Na 377
2
d b,y 3zyB
- w— = 2
ot ez B =Mz o3 (4.1)
) avB 8 auB 3 ) avB
a3t Na 3z *an N2 37 + 3¢ (N an *an Mg
. sz 8 32v8
- — = 2
an (o2 B =am (4.2)
2 avB bl
_ Y2 N _ BB
“EE =5, 8 Ny * N5 gz ¥ 4.3
_ V2 af | avh
ogn “p, 0N (it (4.4)
and
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E:f
L 2 |
_ M2 b A 8
E oﬁn =py 8 ‘Megp *Migy Tz (4.5)
K
'S
")
p
** vhere uB and vB are respectively the dimensionless stress modulated by

the average pressure Po; H=(v/c2) is the Mach number; V is the
asperity speed; N1=(XB + ZuB)/pIIcz; N2=XB/pIIc2; N3=u8/plxc2;

* Zpll)lpllll/z'

2: . - . 4 -
b (3x8+2u8)/p11, YB (qoaaB)/kI, 8 pB/pII, c, [(xII

® 8
€, = (pu/pu)i/2 are the dilatational and shear wave speed,

respectively; &, n, T, X\, pB. a and ¢B vere defined in Chapters 2

B °8
and 3.

Equations for the mechanical stress field are the same as the
thermal stress field except that there is no temperature effect.
4.1 Perturbation Method

For hard wear materials, such as Stellite III, the Mach number M is
of the order of 1073, Since M? is a parameter which is sufficiently
small, Equations (4.1) and (4.2) can be solved by the perturbation
method.

Let the solutions to (4.1) and (4.2) be expressed as a power

series of €=M2; that is

W, n,t,e) = g, n, v + ewBE,n,v + e2ufE,n,0 + ..., 4.6
& vBg,n,t,e) = vBE,n, 0 + evB@E,n,v + e2vB@,n, 0 + ..., .M
when equations (4.6) and (4.7) are substituted into equations (4.1)

and (4.2), the terms with the same power of € are grouped, leading to

s

a set of equations for u%, ug, ug. ..., and vg, v?, vg, <.., @S
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Lt‘ follows:
{
{ " For the terms of the zeroth order in €,
J‘:n
A
u(‘_.‘
o 3 aug) R avg) 3 avE 3 N aug)
"“ - _— -— ,—_— + _ -_— + - ,.-—— =
st MTag’ *ag MeTan’ tan MNapr) * 3 Mooy
v )
2
b Y b y
L) - — B 8
R ot ¢ o7 o8, (4.8)
g
» .\w;.
\ »
B ) avB @ auB 2 a8 8 avB
. — (N,—=2) + == (N, + — (N,—=2) + — (N,—=2) =
R Vo, 9t 3 an 2 3E 9F 3 an 3an 1 3
::;- :
..-. b2 |
] Y
v =— (B8, . (4.9) |
v an C2 |
(] |
r.'_.-
}23 For the terms of the first order in €,
e
J‘_:.)
<

3 auB 2 . 8v§) 3 avB 3 auf
——— — + — — . — —
ot Mage? o Meay) * o Waae) * 5 Mgy’

B

Ll

he;
s

Tt
4.

azuf

'\j:: =6 352 - (4.10)
)

g ) ) 3 a2 auB 2 avB

s = (Ng—2d) + — (N,=h) + — (N3 + — (N, =D =

b (12 .13 d .14 .12 an I an

5

'f:g azv

.?a =653 - (a.11)
o

For the higher order solutions, it is evident that the equations are

-
-
- v

recursive. Accordingly, the recurrence formulas can be written as:

1

-

PP
Wb SN

3 auq) ) avf 2 av@ 2 auf

'a—E (Nl'—é-E- + 'a-E (Nz—g‘) + 5}—‘ (Ns—a'E) + a—r-] (Ns—gﬁ) =

Con Y

»

. 2
2 a Dbg¥g 328,
ol = 84 3 ¢ c)? B )+ (1-8,08 3 0 ‘41D
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‘ *
‘ d avf @ auf 3 ag @ av
K- aF (Ng=9) + = (N,—/2) 4 = (N,—() + ;= (N,—/) =
N .13 12 on 2 3t 3F 73 an oan 1 3n
X
iy 2z
W ) b Y 82vq_
Y = . — 8 -0 .
?_‘. 810 37 ¢ —%;g B v (1-8,008 — 5, (41D
"
™
B
- where 6;, is Kronecker delta.
L
“'. Similarly, we can obtain a set of equations for the stress field as
) follows:
)
ol
0 For the terms of the zeroth order in €,
o
e M 2
« ¥y aff o DBgvg
" 0 = —%£ —2 —2 _ 8
b of, b, & (Magp * Mo~z 0 (4.14)
. " du a_vg
N ° = % ( ) (4.15)
E . ‘ ogn (o] 6N3 aﬂ a( ’
X
2
b,y
- [P auf v DPp'g
-, o = 5 - B - .
- aﬁn by 8 (Npf + N0 c 7 B (4.16)
b
L 4
pe For the terms of the first order in €,
(v
2 2
y 8 vB  byy
g~ e v ovi _ B8
1 = == - 5
3 of, b, & (Mg * Moy~ oz 8 (4.17)
A
L) B VB
Mz vy .M
1 = == 8N, ( + — ), (4.18)
:t O‘En Po 3 ar] ot
¢ vy o s
1 = -1 - By . .
oﬁn po 8 (Nagp * Ny - oz 0B (4.19)
f:': The recurrence formulas for the stress field are
l.'
L 2
o p auf avf  bgY
-r i = 4 i ¥ 21 _ BB B
of P8 (Nyp + Ny =~ 8, (4.20)
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i = 28N, (/v 2 (4.21)
ogn P %Na ¢ 3t g ) 21
p au av bay 8
i = £ b § i_BB
B =B 8 Ny + Ny =~ 2 ef ) (4.22)

The boundary conditions are as follows:
For the zeroth order solutions,

(1) the surface (c(t)/a ¢ E <(c(t)/a + 1], n=0) is traction prescribed

o6l = u.G , (4.23)
%n " P
ogl = -G, (4.24)
nn
where

G - { P'(E) , for the mechanical stress field
“\o, for the thermal stress field

(11) the regularity conditions at infinity, E2+nZ+w, are
. vB, 0B _, ooB , 0B =0, (4.25)
B 8, ooy o, %y
(ii1) the continuity conditions, at n=0, are
u(l) = u(l)l . V(I) = v%l , (4.26)

' (4.2

<l
A e

N
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.
f - (iv) the cavity boundary conditions are traction free.
ﬂ- For the nth order solutions, the surface is traction free and the
remaining boundary conditions are the same as for the zeroth order
solutions. The solutions of each perturbative order can be obtained
K. by applying the finite difference method.
4.2 Difference Formulation
Because of the complexity of the geometry and the boundary

¢ conditions, the finite difference method is considered more appropriate
- than the transform method, which was used in the cases without a
cavity. In this section, only the zeroth order solutions of the
thermal stress field will be discussed in detail, the solutions of
higher order and the mechanical stress field can be obtained similarly.

In the finite difference method, the semi-infinite body is replaced
by a sufficiently large rectangular region (Figure 4.1), and a non-
uniform mesh must be used as we stated in Chapter 3. The non-uniform
mesh 1s transformed to the uniform mesh by applying the general
coordinate transformation (Appendix II). The stress field can then be
solved in the transformed plane (computational plane) (E,ﬁ). The

finite difference form of the thermoelastic Navier's equations (4.8)

{ and (4.9) in the computational plane (E,ﬁ) can be written as:

@V LW TGNy

a,vB(i-1,j-1,n) + a,uBi-1,5,n) + agvB(i-1,3+1,n) + a,uB(i,3-1,n) +

s

+aguBii,g,n ¢ 8 B, gr,m v apvBaiel, j-1,m ¢ aguBliet,j,n ¢

Coal i P =

-~

+ aguB(it1, g+1,n) = 5E [—Q—ﬁ oB(1,5,m1 (4.28)

o€
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LA a

and
aious(i-l.J-i.n) + ailvﬂ(i—i,j.n) + aizuB(i-i,J+1,n) +
+ a,vB1, -1, + a, v, G + 8, vBaL, 41, m4a  uBliv, -1,y 4
2
3 b,y
+ 2, vBUAL 3,m) + 8 guBlist, JH,m) = o [—%—% oBli,j,m1 ,(4.29)
2
where
a, = [N,(i-1,§) + Na(i,j-i)]/(QEEn-AEAﬁ) , (4.30)
n
! 2pAE2 N, (i,j 3AE ( )
a, = N, Z'J)/‘EE AE2) + l(l,J)EEE/(ZEE AE) 4.31
a; = -[N,(i-1,3) + Ns(i,j+1)]/(45EnaAEAﬁ) , (4.32)
1 - -
a, = Ny(i,j=>)/(n_2An2) + N (i,jin__/(2n_38n) , (4.33)
2 3
n nn n
1 1 -
ag = ~IN (145, 5) + N1(1-§,J>]/(EE2A£1> -
(i +1) + ! 2pn2 (4.34)
(N;(i,] 2 N3(1'1-2)]/(nﬁ An<) , 4.
1 - -
ag = Ns(i,j+§)/(n-26n2) - Na(i,j)n__/(Zn_aAn) , (4.35)
, n m n
A ]
v a, = —[N,(i+1,3) + Ns(i,J-i)]/(4EEnaAEAﬁ) , (4.36)
(4.37)

1 r g
ag = N1(1+§,j)/(EEZA£2) - Ni(i,J)EEE/(ZEE3AL> .

C B il L A 9 oA AT AN ' O A " 0 1 A L A 0 AN o % a0 A SN AN
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AN ag = [N, (1+1,)) + N3<1,J+1>J/<4£En-AEAR> : (4.38)
N n
;o"'
" - -
E‘J’l‘: a0 = IN(1,371) + Ny(i-1, )1/ (akon-6Eam) (4.39)
N
'&"2
e
1 - -
;,2, a,, = N3<1-§,j)/(£EZA22> + Na(i,j)EEE/(2£E3A£) , (4.40)
o
'*""‘.
ol
= - -
:’Ti a,, = [N, (i,j+1) + Na(i-i,j)]/(QEEnEAEAn) . (4.41)
-:;-. 1 - _ -
w‘;f'ﬁ a5 = N1(1,J-§)/(n-2An2) + N (i, j)n__/(2n_34n) , (4.42)
SN n nn n
o
oa 1 1
‘ 8,4 = ~INgti-3, ) + n3(1+§,3)]/(£EZA£2) -
N "=
N 1 1 -
A - IN (1, j+2) + N (i,J=3)1/(n_28n2) (4.43)
,.-"‘ n
NN 1 - -
K7 ay5 = Ny (1,3+3)/(n_-2802) = N (1, ))n_—/(2n_340) (4.44)
S n nn n
‘-_,‘-
ML
7,
) 816 = TIN2(1,371) + Ny(1+1, )1/ (aEcn-aEan) (4.45)
W,
2
o
= 1 - -
L
i~ a,, = N3(1+E,j)/(EE2A£2) - Ns(i,j)EEE/(ZEE3A£) , (4.46)
o . EAT
:;ﬁg a,g = [N, (1,3+1) + N3(1+1.j)]/(4EEnRA[An) . 4.47)
N
%
.‘ The traction surface boundary conditions are expressed in terms of
sl
“ﬁ- the displacements:
e
ALY
o - v!(1—1.1,n)/(2£EA£) - 3uldi,1,m/(2n_8n) + 2ul(1,2,n)/(n.An) -
» n n
o
K
,‘0:
1}
l,.‘.
A
0
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! & ul(i,3,n)/(2n_8n) + vI(i+1,1,n)/(2£EAE) =0, (4.48)

n

and
@
- N2<1,1)u‘(i—1.1,n>/(2L€AE) - 3N, (i, vE, 1,10/ (2n_8n) +
n
® + 2N, (1,1)0vI(i,2,n)/(nbn) - N, (i,1)vE(1,3,n)/(2n-8n) +
n n
= bgv,
+ Nz(1,1)u1(1+1,1,n)/(ZEEAE) = =z ¢Td. LM (4.49)
2
2 &
The traction free boundary conditions on the cavity (Figure 3.3)
are:
v On face AB:
o
- vI(i-1,j,m/(2E_0E) + ul(i, j=2,n)/(2n.8m) - 201G, j~1,n)/(ndn) +
£ n n
¢ - -
+ 3ul(i,j,n)/(2n_4an) + vl(i+1,j,n)/(ZEEAE) =0, (4.50)
n
and

¥

-

N2<1,j>u1(1-1.j,n>/<2£EAE) + Ni(i,J)vI(i,J-Z,n)/(Zn-Aﬁ) -
n

2N, (1, HvICi, 3=1,n)/(n_An) + 3N, (1, 3)vI(1, 3,0/ (2000 +
n n

- bgy
Nzti,J)u1(1+1,j,n>/<ZEEAz) = 32; éIdi,j,m (4.51)
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On face AC:
- Nl(i,j)uII(i-i,j,n)/(EEAE) - Nz(i,j)vII(i,j—i,n)/(ZnaAﬁ) +
+ Nl(i,j)uII(i,j,n)/(EEAE> + N2<1.j)v11(1,3+1,n>/(2n_aﬁ> =
n
b¥rvix

= 2 ¢Il(ivj’n) 4 (4.52)
C2

and
- vII(i~1,j,n)/(EEAE) - uII(i,j-i,n)/(ZnaAﬁ) + vII(i,j,n)/(EEAE) +
+ uII(i,j+1,n)/(2naAﬁ) =0, (4.53)
On face BD:
- Nz(i,j)vII(i,J-i,n)/(ZnaAa) - Nl(i,j)uxr(i,j,n)/(EEAE) +
+ Nz(i,J)vII(i,J+1,n)/(2naAﬁ) + N,(i,J)uII(i+1.j,n)/<cEAE> =
= Bgigll 11¢i,j,m , (4.54)
and
- u[I(i,j-i,n)/(ZnaAﬁ) - vII(i.J,n)/(EEAE) +
+ ull(i.j+1,n)/(2nEAﬁ) + v11<1+1,1,n)/(:EAE> =0, (4.55)
‘;
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On face CD:

vII(i-i,j,n)/(ZEEAE) 3ull(i,j,n)/(2n-01n) +
n

+

2ull(q, j+1,n)/(n-bn) - ull(i, j+2,n)/(2n-0n) +
n n

+
it
[~}

v11(1+1.j,n)/<zzEAE> (4.56)

and

Nz(i,j)uII(i-l,j,n)/(ZEEAE) 3N1(i,j)vII(i,j,n)/(ZnaAﬁ) +

+

2N1(1,j>v11(1,J+1,n)/(naaﬁ) N,(i,j)vII(i,j+1,n)/(2nﬁA;) +

b¢.y
—11555 o11(i,j,n), (4.S7)
€2

+

Nz(i,j)uII(i+1,j,n)/(2EEAE)

wvhere ¢B(i,j,n), a¢3(i,j,n)/8£, and 8¢B(1,j,n)/8n are input data
obtained from the temperature field solutions (re: Chapter 3).

4.3 Cavity Corners Singularities

When values of a solution of a boundary-value problem or its
derivatives approach infinity at points, lines, or surfaces in the
domain, the solution is said to possess singularities at these places.
The approximation of functions with singularities presents some serious
numerical difficulties. Nevertheless, calculation of solutions with
singularities is extremely important; such problems arise in fracture

mechanics, various flow phenomena, heat conduction problems, and in
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fact, in any boundary-value problem in which strong irregularities
occur in one or more of the following: (a) the geometry of the domain,
(b) the coefficients in the governing differential equation, or (c) the
prescribed functions, and so on.

Despite the difficulties, numerical methods can be devised that
yield excellent results for singular problems. Basically, there are
two general ways the problem can be approached:

Nonuniform Meshes: This means that a finer gradation of the mesh
is used in the neighborhood of singular points in order to capture
large changes in the gradients of the solution nearby. This is often
a straight forward and effective way to handle singularities and it
requires no special modification of the code or special elements, but
it may be expensive owing to the necessity of a large number of grid
points.

Special Singular Elements: The scheme in this case is to devise
special elements in which the approximation simulates the diverging
rate in elements in the vicinity of the singular point. However, this
method can be used only when the behavior of the singularity is known.
The procedure of this method is to assume a series which consists of
both the regular terms and the singular terms. For thermomechanical
problems, the series form of the asymptotic expansion can be written in

the form [59,60,61,62,63]:

L

u(r,8) = regular term + I A r"™/C f£(6) , (4.58)

ey
SKA

Far

A5

where r, 0, and [ are defined in Figure 4.2. Indeed, when n/{ is not

an integer, the derivatives of the leading term in the singular part of
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Figure 4.2 Polar coordinates for a domain

with a corner at p.
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o
o
“u
‘\ u may become unbounded. The order of the singularity increases as [
{ increases. If mn/f < 1, P is referred to as a reentrant corner and the
o |
: first derivatives of u are then unbounded as r+0. For the present
- problem, T=3n/2.
’_ For the current problem, the stress singularity at the cavity
M-
o corner can be resolved by using the results of Williams [641 and Sih
169
A%
i [65). The series form for the displacements in the neighborhood of the
. cavity corner are:
3& u(r,0) = a1r2/3cos(20/3) + 32r2/3s1n(20/3) + asr2/3cos(49/3) +
3
R
"
L. + aqr2/3sin(40/3) + a5r4/3cos(49/3) + asr4/3sin(49/3) +
-
-
i
:- + regular term , (4.59)
-
;
Ko
w and
L <
K",
¢
2
' v(r,8) = b,r2/3cos(20/3) + b,rz/3sin(26/3) + byrz/3cos(40/3) +
b
-
-
v + b,r2/3sin(40/3) + bsr4/3cos(48/3) + bgrd/3cos(46/3) +
o
L)
s + regular term . (4.60)
"
Ni
5"
.‘ In the special elements, parts of the coefficients of the series can
'
- be determined by substituting equations (4.59) and (4.60) into
7
. Navier's Equations (4.8) and (4.9) and the traction free conditions on
L4
- the cavity. The remaining coefficients can then be solved by using
~
Y the difference form (4.28) and (4.29). As illustrated in Figure 4.3
"
4
N
%
.
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::* for one specific corner, one can use Equations (4.8) and (4.9) at
f: points 3 and T and the traction free condition at point 5 incorpora-
SE ting the singular behavior; then one can use the difference form
:' (4.28) and (4.29) at points 1, 2, 4, 6 to determine the other

‘ coefficients of the series.
;S Equations (4.28, 4.29, 4.48, 4.49, 4.50, 4.51, 4.52, 4.53, 4.54,
;5 4.55, 4.56, 4.57) and the special elements compose a complete set of

. ° difference equations for finding the stress field. For the zeroth ‘
‘3 order solutions, we have to solve a set of simultaneous algebraic

5 equations, which can be separated into two groups, depending on whether
_.- " the coefficient matrix is dense (few zero elements) or the coefficient
; matrix is sparse (many zero elements). The two commonly used methods
E of solving simultaneous algebraic equations include the direct method
.‘ and the iterative method (66, 67, 68, 69, 70, 711.
f; Figure 4.4 shows the element pattern of the matrix for the zeroth
‘E order solutions. It is a large, banded, but unsymmetric matrix.

- ® Because of the dimension of the matrix (= 4400x4400), it is almost

N impossible (too expensive) to store all of the elements. Fortunately,
;5 the matrix is banded, therefore we can only store the elements inside
-!€~ the bandwidth by using the one-dimensional array as shown in Figure

5 4.5, and then using Gauss elimination to solve the system. The

'

:: computer programs for solving the thermal stress field are given in

A ¢ Appendix IV.
. 4.4 Numerical Results
.
:E For the numerical examples, Stellite III is used as the base

{ < material. The mechanical and thermal properties of stellite III are:
} E=240x103 Mpa, v=0.28S5, p=8.3x103 kg/m3, K=9.7 J/m-9K-s, x=2.77x1076
;




AN
AN /// /// AN /// ,////,
AN N
AN \\ N\ N

(fr‘ny

-PI9TJ B894318 Y3 J0J Xy4I0w papueg -y dnITd
VYX00VY AN
A NN SNN
NN
W




Figure 4.5 One-dimensional array to store banded matrix.
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m2/s, @=11.3x107¢ m/m' 9K, and ue=0.5. For this problem, the smallest
AF and An in the stress field are 0.02 and 0.006, respectively. The
total grid points in £ and n directions are 67 and 35. The other
important numerical parameters are: V=15 m/s, w=30a, d=0.3a, e=0.5a,
and a=1 mm.

In the numerical results, the effect of the cavity location and the
effects of the mechanical and thermal properties on the stress field
are also studied. All figures (Figures 4.7 through 4.24) arc plotted
for the worst case of the asperity position, that is when the asperity
is right over the cavity or when the trailing edges of the asperity and
the cavity are aligned as shown in Figure 4.6 (asperity position in
from £=-0.7 to £=0.3; cavity location is from £=-0.3 to £=0.3).

When the cavity is located entirely in the surface layer, because
the coating layer is thick, the effect is similar to the effect of a
single material [33,34,35]. Figures 4.7 to 4.12 plot the thermal
principal stresses along the asperity traverse direction at the
critical depth for the cases of a single material with a cavity.
Different cases of a single material with a cavity are tabulated in
Table 2. Figure 4.7 compares the dimensionless principal thermal
stress of the single material with (case 1A) and without (case 2) a
cavity. The maximum dimensionless tensile thermal stress is 0.98 for
no~cavity case occurring at a depth n=0.16, while it is 5.9 at a depth
of 0.088 for the medium with a cavity at a ligament thickness 0.094.

The location of the cavity from the wear surface, as indicated by
the ligament thickness, influences the temperature field in the total
volume available for heat content generated by frictional heating. As

a consequence, the thermal stress state is strongly affected. Figure
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Table 2
case k pc E « L cavity stress computed
1A 1k 1pc 1E ia 0.094 Yes thermal stress
1B 1k 1pc 1E 1x 0.06 Yes thermal stress
1C 1k 1pc 1E ia 0.122 Yes thermal stress
1D 1k 1pc iE 1a 0.159 Yes thermal stress
2 1k 1pc 1E ia No thermal stress

3A %k 1pc 1E 1x 0.094 Yes thermal stress
3B 2k 1pc 1E iax 0.094 Yes thermal stress
4A k 2pc 1E 1 0.094 Yes thermal stress
4B k %pc 1E ia 0.094 Yes thermal stress
SA k pc 3E ia 0.094 Yes thermal stress
SB k pc %E 1a 0.094 Yes thermal stress
SC k pc 2E 1x 0.094 Yes thermal stress
6A k pc E 2a 0.094 Yes thermal stress
6B k pc E %ﬂ 0.094 Yes thermal stress

* Base material is Stellite III.
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Figure 4.6 The relative positions of the cavity and the asperity.




Figure 4.7 Thermal principal stress (cases 1A,2).
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4.8 shows the effect of various cavity locations on the thermal stress
field. Ju et al [27,32,58]) showed that, without a cavity, the critical
depth at which the tensile thermal stress reaches a maximum is n=0.16
for a moving line asperity excitation over Stellite 1I1. However, with
a near-surface cavity, both the temperature distribution and its
gradients are different, thus changing the critical depth. The maximum
tensile stress is optimized with respect to various ligament thickness.
The worst case for the maximum tensile stress for Stellite III is
obtained when the top edge of the cavity is at n=0.094.

Figurc 4.9 presents the effect of the thermal conductivity. Case
1A is of Stellite ITI. Case 3A shows the effect that the thermal
conductivity is reduced by half, while case 3B demonstrates the effect
that the thermal conductivity is twice that of Stellite III. Figure
4.9 establishes that the principal thermal stress increases with
decreasing thermal conductivity. In Figure 4.10, cases 4A and 4B show
the results of doubling and halving the thermal capacity, respectively.
We observe that decreasing heat capacity will increase thermal stress.
Figures 4.11 and 4.12 demonstrate the effects of Young's modulus and
the coefficient of thermal expansion. In Figure 4.11, Young's moduli
for cases 5A and 5B are, respectively, three times and one-half that of
Stellite III. In Figure 4.12, the thermal expansion coefficients for
cases 6A and 6B are, respectively, twice and one—half that of Stellite
II1I. These two figures clearly show that increasing either Young's
modulus or the thermal expansion coefficient induces higher thermal
stress.

When the top edge of the cavity is at the interface, both the

coating layer and the substrate will influence the stress field.
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Figures 4.13 to 4.24 shov the results of the cases in which the top
edge of the cavity is at the interface. Different cases of a layered
medium with a cavity are listed in Table 3.

In the case of a medium with no-cavity, the effect of the
mechanical stress field is small enough to be neglected. When a cavity
exists, the effect of the mechanical stress field is no longer
negligible. Figure 4.13 plots the principal thermal stress field (case
TA), mechanical stress field (case 7B), and combined stress field (case’
7C). 1In this figure, the material of the substrate is Stellite III,
and the material properties of the coating layer are the same as
Stellite II1 except that Young's modulus is twice that of Stellite III.
This figure establishes that the tensile thermal stress is larger than
the tensile mechanical stress. However, the mechanical stress field is
not so small that we can neglect it as indicated in the no-cavity case.

The effect of the cavity location on the thermal stress field for a
layered medium is presented in Figure 4.14. From this figure, one can
see that the maximum tensile stress occurs when the ligament thickness
L=0.094, which is the same value as in the case of a single material
with a cavity. Figures 4.15 and 4.16 present the effects of Young's
modulus of the coating layer and the substrate, respectively. In
Figure 4.15, the material of the substrate is Stellite III for all
cases. Young's modulus of the surface layer for different cases is:
case 1A is the same as Stellite III; case 7A is twice that of Sellite
III, case 9A and case 9B are, respectively, three times and one-half
that of Stellite II1. From this figure, one can see that the principal

thermal stress field is strongly influenced by the Young's modulus of

the coating layer; increasing Young's modulus of the coating layer will
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Table 3

case k;y kygy E; Epr @ @y L cavity stress computed
TA 1ky 1kyy 2E; 1E;; 1@y 1a;; 0.094 Yes thermal stress
1B 1k ia; 1lapy 0.094 Yes mech. stress

1C 1k; 1ky;; 2E; 1E;; 1&; 1a;; 0.094 Yes combined stress

8A 1k; 1kyy 2E; 1E;; 1a&; 11ayy 0.06 Yes thermal stress

by pair e s, RN T e — EEEEEEL il
L ¢

-
=

L]
X
tm

-
(=3
tr!

[ ]

L]

& 8B  1k; 1k;; 2E; 1E;; 1a; 11a;; 0.07 Yes  thermal stress

8

[

=
-

1k;y 2E; 1E;; 1a; 1a;; 0.12 Yes thermal stress

8D 1k; 1kg;y 2E; 1E;; 1a; 1a;; 0.159 Yes thermal stress

P A  1k; 1k SE; 1E;; 1a; fay; 0.094  Yes  thermal stress
9B iky 1kyy 3E; 1E;; 1&; 1@y 0.094 Yes thermal stress
10A 1k; 1k;p 1E; égtx ia;, 1a;; 0.094 Yes thermal stress
' & 1B 1k, 1kyy 1E; 3E;; 1a; 1a;; 0.094  Yes  thermal stress
10C 1k; 1kyy 1E; SE;; 1&; 1a;; 0.094 Yes thermal stress
1A D otk 1B, 1By te; oy 0.094  Yes  thermal stress

11B 2k; 1kyy 1E; 1E;; 1a; 1ap; 0.034 Yes thermal stress

12A 1kx 1klx 1EI 1EII 2«1 1011 0.094 Yes thermal stress

2 o - A

12B 1k; 1kyp 1E; 1E4y %“t 1a;y 0.094 Yes thermal stress

y &
: * Bagse materials for both the coating layer and the substrate are
b
Stellite III.
le
c
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Figure 4.13 Thermal, mechanical, and combined principal stress (cases TA,.TB,TC).

L=0.094, and 1=0.06 above the top edge of the cavity for all cases.




i W
™ -—
\
o
- —
.. >

a—

- -— =

S =

® \"\\. m

N A =
N ®
N -—
N
& — N ——
© (o] I -~ o o
b --.-:‘_o . . » . . lA ‘- '0

1 43" 1% .-“\\

o g‘\\‘\'
v /4
£ g 5 § T
e 6 o © (
@ i L} L] [}
R B \‘

q

CASE 80 — -~ ~—--—L = 0.159
L
<
of the cavity for all cases.
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CASE TA
CASE 8A
CASE 88
CASE 6C

Figure 4.14 Thersal principal stress (cases 7A,8A,88B,08C,8D). n=0.06 above the top edge
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increase the principal thermal stress. In Figure 4.16, the material of
the coating layer is Stellite III for all cases. Young's modulus of
the substrate is one-fifth (case 10A), one-half (case 10B), and five
times (case 10C) that of Stellite III. This figure shows that
decreasing Young's modulus in the substrate will result in increasing
the thermal stress field, but the influence from the substrate is
weaker than from the coating layer. Figure 4.17 compares the effect of
Young's modulus on the thermal stress field from a single material and
from a layered medium. In the figure, dashed lines represent the case

of a single material with a cavity, while solid lines represent the

Byt

case of a layered wmedium with a cavity. From this figure, we observe

.
[AEREN

that thermal stress increases linearly in proportion to Young's modulus

4
E <
v
o

for the single material case. For the layered medium case, however,
increasing by the same amount Young's modulus in the coating layer will
result in higher thermal stress than in the case of a single material.
This is because we will have a relative softer substrate by increasing
Young's modulus in the coating layer. The effects from thermal
conductivity and the coefficient of thermal expansion are presented in
Figures 4.18 and 4.19. These effects are gimilar to those found in the
case of a single material with a cavity.

From the failure specimen for the case of a single material with no-
cavity (Figures 1.1 and 1.2), we observe that the thermomechanical
cracking is perpendicular to the wear surface. However, Ju and Liu
{34) showed that, in the case of a layered wedium with no-cavity, shear
delamination (cracking is parallel to the wear surface) may occur
caused by the changing of principal directions (larger angle of

principal direction), therefore, it is important to understand vhat
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vill affect principal directions. Figure 4.20 shows the effect of the
ligament thickness (cavity location) on principal directions at the
point £=0.3 and n=0.006 above the cavity top edge. From this figure,
we observe that increasing the ligament thickness will result in larger
angle of principal direction, and the angle of principal direction
changes drastically when L=0.094, the value which gives the maximun
tensile stress. Figures 4.21 and 4.22 compare the effect of Young's
modulus on principal directions for the case of a single material with
a cavity (dashed line) and for the case of .. layered medium with a
cavity (solid line). These two figures establish that decreasing
Young's modulus in the coating layer (EI) or increasing Young's modulus
in the substrate (EII) will increase the angle of principal direction.
Nevertheless, changing Young’'s modulus in the case of a single material
with a cavity will not affect the principal directions. Figures 4.23
and 4.24 illustrate the effects of the thermal conductivity and the
coefficient of thermal expansion on principal directions for the case
of a single material with a cavity (dashed line) and the case of a
layered medium with a cavity (solid line). From these two figures, one
can see that thermal conductivity and the coefficient of thermal

expansion will not influence principal directions significantly.

.-
o~

A
1

<
-

...'l.:'

Z
L]

(]
Vg

LA

L5
et

e "
L3

5 Yy

.,

2 -
'
0
¥

(g !
!

A

-




‘PI1J 883139 TewmuiN) N3 jo

UOTIDIP [edioutid Jo ITIuE I UO REWNDTYI WIWITT A3 Jo D)2 WL 0Z'v aundig

1+ 8S°1-
gf 08" |-
1 -3 I#» T 65 -
1
89’1 av- i ae’l pa’1 a8 a9’ av’ ae’ &&.s
' : “ + #8-8—+——]
T @5’
u &
+ 08" T
72 T
-ﬁ 482
1 0572 =
X
Teae = %
. 2
(9343ap)¢ ¥ £
m»l-u
IS
bois
23
oy s
e
.fN,
SN
<Y y ] 9 ® 4 . _ ¥or:
.l‘ﬂnlﬂltv.‘t‘\v".,-‘hb‘ \.h.-u\h.ln‘\ ] r-.-.-.-.-..%.l’ _ “r-'- WP, £ 1.5 .- ‘-0.”- .-‘.I.i‘ . -1’ -, ..‘ e ‘.t\' - bn.n.-'l.-l\‘ X o c _ [ -‘&“



"8388D [[® 403 £37A8D Y3 jo a2
dojy Y3 IJaoqe 90°0=U PU® ‘y60°0="1 "PIITJ BSINIS [WWIIYJ YY) JO UOTIIIIP

(edyouyasd jo afdue a3 uo iadey uFE0d Y3 jo snnpom =, N0k JO DI WL IZ°y M3y

B8 +37 1%
'a B8'¢ 262 91°¢ @8'1 bb'l 8@°1 e 3t- 68q'e

i 'y
L L

T
-
-
-+
-~

5

s

4y,
© <E.5§~§
V1 T 82’1

T 086°1]

ALIAVD V HLIM TVINAIVH TEMIS T @8l

1 43° 1%

™
o

NS Y

TV

A AT

A
g
'h\-l:

-

s,
R

, LA,
N

w7

VL ATEOAL

T

51’»{ o W

1%

$-’.\- &l L

LS

R R B,



- - W -.--\--v-r-~1xn~:'r'v'rvl"'xw'wmw“vmmmmwmmmm

<

v -r"’: 13
= | § g
o E 5
® — . b
4o = °%
- ]
° ¥ 8
5 £ s
15 g I
: oy
- 2 E 17 ‘0‘§.
> -— ®
(| S  :
< . -
Bl IE = |23
- - 2 « & g
v
Bl B 7 (s B
- 2 F ~
S b
v 7 1 vy & ¢
? A
le = 43
: s 5
X t ¢ 3
“ t 1 §'§%
[
g -2 A
L L 1 [ S | [ R | j o~ Y
] T T L § T T T T éla
c T = 8 % 8 § 3 8 ¢
NN e e e : ' ) E
1 +3 1% T =




} —+
1.58 1.84@

LAYERED MEDIUM WITH A CAVITY
SINCLE MATERIAL WITH A CAVITY — — —
1.20

principal direction of the thermal stress field. L=0.0%4, and n=0.06 above

the top edge of the cavity for all cages.

Figure 4.23 The effect of thermal conductivity of the coating layer on the angle of
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CHAPTER S

DISCUSSION AMD CONCLUSIONS

The oresent investigation demonstrates the effect of a near-
surface rectangular cavity on the temperature and stress fields caused
by the frictional excitation of a moving asperity. The effects of a
coating layer are demonstrated by the material parameter variations in
the coating layer and the substrate, including changes on both thermal
and mechanical properties. The mathematical model, because of the
geometry, is time explicit. Since the transient solution to a multiple-
boundary problem is always complex, numerical solutions become
necessary for analyses in specific cases. In the present problem, it
has been demonstrated that: (i) the transient governing differential
equations (2.1, 2.12, and 2.26), can be formulated in difference forms;
(11) the nonuniform mesh (E,n), which must be employed due to strong
local effects, can be transformed into a uniform mesh (E,ﬁ); (111)
boundary conditions in temperature and/or heat flux can be expressed
through the energy balance wmethod, thus avoiding the singularity
problem at the cavity corner; (iv) the stress singularity at each
corner of the cavity can be taken care of by embedding a known stress
singularity in the vicinity of the corner; (v) the numerical solution
can be tested by comparing with a known analytical solution, showing a
satisfactory accuracy; and (vi) the numerical scheme can be extended to
compute the solution for other geometries, such as those including
cracks and circular cavities, using proper coordinate transformations.

Like most numerical solutions, functional relationships can not be
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obtained without voluminous computations. However, significant
conclusions can be reached through a careful selection of pertinent
cases for the numerical results. The conclusions for the present
problem are:

Temperature field

1. Because of the discontinuity in heat transfer across the cavity,
temperature will rise higher in the ligament region than the no-cavity
case.

2. The temperature rise is inverse to the ligament volume,
represented by the ligament thickness.

3. Increasing the thermal conductivity and heat capacity of the
coating layer, will decrease the surface temperature.

4. When the coating/substrate interface is at the ligament depth,
the thermal property of the substrate will influence the temperature
field in the region on the trailing edge of the asperity.

S. Because of the necessary heat transfer in the lateral direction,
the heat flux will be at a large oblique angle to the wear surface. In
the case of a layered medium without a cavity, the near surface heat

flux at the critical position 1s in a direction approximately 900 to

the wvear surface. With the presence of a cavity, not only the
magnitude of the temperature gradient increases, but also the direction

! of the temperature gradient is rotated to & more oblique angle to the

iq¢ vear surface. This will affect principal directions in the thermal
stress field.
; Stress field
¢ 1. In the governing differential equation, the small order
E coefficients of the dynamic terms would have required an extremely
Qe
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small time step for the consideration of stability and truncation
error. This difficulty was circumvented by using the perturbation
wethod. The solutions of the differential equations (4.12) and (4.13)
of the various perturbation orders are well-behaved. The
magnification, (uj4,/uy), is of order 104. Since €(=M?2) is of the
order 1076, each perturbation term in equations (4.12) and (4.13) is of
order 1074 of its preceding term. Because the series converges
rapidly, all computations are deemed adequate by using only one term.

2. When a cavity exists, the stress state that determines the
failure phenomenon is much more gsevere than in the no-cavity case.
This will lead to earlier failure of the mechanism.

3. The mechanical effect, which can be neglected in the no-cavity
case, 18 not negligible when cavities exist.

4., The effects of the mechanical and thermal properties on the
stress field are consistent with those obtained in the no-cavity case
in reference (32]. These effects may be summarized as follows: thermal
stress can be reduced by decreasing Young's modulus in the coating
layer, increasing Young's modulus in the substrate, increasing thermsal
conductivity and thermal capacity of the coating layer, and decreasing
the coefficient of thermal expansion of the coating layer.

S. For a thin coated medium, the cavity location and the msterial
properties matching (especially Young's modulus) will influence the
principal directions of the thermal stress field. When the angle of
principal direction becomes larger, shear stress at the
coating/substrate interface becomes dominant, leading toward
delamination of the coating.

6. The location of the cavity influences the critical depth at

A S H I AT Ty NPT -';ﬂ:i
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vhich the thermal tensile stress reaches a maximum. When the cavity
occurs closer to the wear surface, not only the critical depth is
reduced but also a higher stress results, which reaches its maximum at
a critical ligament thickness. Further reduction of the ligament
thickness would increase the ligament temperature, resulting in an
extension of the thermal compressive region therein. Correspondingly,
the thermal tensile stress decreases near the ligament region. The
illustration for Stellite III shows that the critical thickness is at
Lor=0.094 for both cases of a single material and a layered medium with
a thickness of approximately 40Z of the critical depth of the no-cavity
case. For the normal design of coating thickness, the critical depth
of the specific coating material can function as a guide. However, if
cavities are either unavoidable or too expensive to control, the design

thickness should avoid the critical ligament thickness.
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APPEXDIX I

INTRODUCTION TO THE FINITE DIFFERENCE METHOD

The use of numerical methods for solving problems is a result of
the complexity of the analytical solutions associated with practical
engineering problems. Often times, analytical solutions are
impossible. In engineering problems, factors that bring about the use
of numerical methods are complex geometry, nonlinearity, nonuniform
boundary conditions, time-dependent boundary conditions, temperature-
dependent properties, and so on. In some cases, analytical solutions
are possible, in principle, but the mechanics of obtaining the exact
golution may be much more difficult than the task of solving the
problem numerically. For example, in the problem of finding the stress
solution of a composite multilayered body with nonhomogeneous boundary
conditions, it i8 relatively easy to set up the differential equations.
The solution, however, 1is extremely complex, because it is necessary to
deal with simultaneous partial differential equations. In all such
cases and many others, if one is equipped with the knowledge of
numerical methods and computer programming, the required solution can
be successfully obtained.

Finite difference approximations for derivatives werc already in
use by Euler in 1768. The simplest finite difference procedure for
dealing with the problem dx/dt=f(x), x(0)=a i8 obtained by
replacing (dx/dt), ., with the crude approximation (x, - x,., )/At.

This leads to the recurrence relation x,=a, X,= X,-,*+ Ot flx,_,,t,-,)

for n > 0. This procedure is known as Euler's method. Thus we see

RGN TN T L AN *&'tv:v:;'ﬂ



that, for one-dimensional systems, the finite difference approach has

been deeply ingrained in computational algorithms for quite some time.

I.1 Finite Difference Approximation of Derivatives Through
Taylor's Series

The derivative of a function at a given point can be represented by
a finite difference approximation using a Taylor series expansion of
the function about that point. Let f(x) be a function that can be
expanded in a Taylor series. Then a Taylor series expansion of the

functions f(x+h) and f(x-h) about x, as illustrated in Figure 1.1, is

given by
h2 h3
f(x+h) = f(x) + h f'(x) + ET f''(x) + 57 f'ri'(x) + ..., (I.1)
h2 h3
f(x-h) = f(x) - h f'(x) + ET fri(x)y - 3v f'rx) + ..., (1.2

vhere primes denote derivatives with respect to x. The first- and
second~order derivatives f'(x) and f''(x) can be represented in the
finite difference form in many different ways by utilizing Taylor
series expansions given by equations (1.1) and (I.2) as now described.
First Derivatives

To obtain expressions for the finite difference form of the first-
order derivative f'(x), equations (I.1) and (I.2) are solved for

f'(x). We, respectively, obtain

, f(x+h) -~ f(x) h . h2 . 3
f'(x) = h -2 f''(x) - 3 f (x) + ..., (1.
f(x) - fix-h) . h h2 ¢ L2
' = —_— (] - — vy +
f'(x) n 2 f''(x) 3 (x) veed (I.
-103-
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Figure 1.1 Nomenclature for a Taylor series representation.

f(x)

?
. A

i+y

] — X
1-2 1-1 1 144 142

Figure 1.2 Nomenclature for finite difference representation

of f(x).
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o Subtracting equations (I.1) and (I.2) and solving for f'(x) we obtain

f(x+h) - f(x=h) h2

f'(x) = 2h T 5 f (x) + ..., (1.5

From equations (I1.3) to (1.5), the following approximations can be

written respectively for the first derivative of a function f(x) about

® the point x.
ey - &
f; = ‘—-ﬁ-———“ + 0O(h), forward difference (1.6)
f - fi_
f; = —l-g'——-l + O(h), backward difference (1.7
fooy - §4
) ' - __1._———_1 s
- f' = + 0(h2), central difference (1.8
’ 1 2h

here the notation O(h) is used to show that the truncation error
involved is of the order of h; similar'y O(h?) is for the truncation

error of the order of hZ, and

x = 1h, x+h = (i+1)h, x=h = (i-1)h, etc, (1.9

fix) = fi' f(x+h) = f‘+1, f(x-h) = f , etc, (1.10)
as illustrated in Figure I.2. We note that forward and backward
differences are accurate to the order h whereas the central difference
expression is accurate to the order h2. More accurate expressions can
be obtained for the forward and backward difference representation of

the first-order derivative as will be dicussed later.
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Second Derivatives

We now proceed to the finite difference representation of the
second derivative f''(x) of a function f(x) about the point x. To
obtain such results we consider a Taylor series expansion of functions

f(x+2h) and f(x-2h) about x as

f(x+2h)

4
f(x) + 2h f'(x) + 2h2 f''(x) + 3 h3 f''"(x) + ..., (I.11)

4
f(x) — 2h f'(x) + 2h2 f''(x) - —— h3 f'""(x) + ..., (l.12)

f(x=2h) 3

Eliminating f'(x) between equations (I.1) and (I.11) we obtain

f(x) + f(x+Z2h) ~ 2f(x+h)
f''(x) = nZ -h f'""'"x) + ..., (1.13

Similarly, eliminating f'(x) between equations (I.2) and (1.12), we

find

f(x-2h) + f(x) - 2f(x-h)
f''(x) = hZ +hf'"'"(x)+ ..., (1.14)

Eliminating f'(x) between equations (I.1) and (I.2) we obtain

. f(x-h) + f(x+h) - 2f(x) 1 2 grie 5)
f''(x) = nZ 12 hZ f (x) + ..., (1.1

Using the subscript notation defined by equations (I.9) and (1.10),
various forms of the finite difference representation of the second-

order derivative f''(x) about the point x given by equations (I.13) to
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)
b
}
b
)
E'i (1.15) are written, respectively, as
f - 2f + f
£10 = 2—H—122 4 0(h),  forvard difference (1.16)
L
f_ - 2f1_ + f
f;' = % Nz - 1+ 0(h), backward difference (1.1
f_ - +f
£re = 24 = =1 4+ 0(h2). central difference (1.18)
@ 1 he
We note that the central difference representation is accurate to
0(h2) whereas the forward and backward differences to O(h),
o
More Accurate Finite Difference Representations
The forward and backward finite difference representations given
above are accurate to O(h). More accurate expressions can be obtained
v
as now described. Suppose f'(x) is to be represented in forward
difference to O(hZ). Equation (I.13) is introduced into equation
(I1.3) and f''(x) is eliminated. We obtain
L
) , =3f(x) + 4f(x+h) =~ f(x+2h) 1 hZ £ 00 + 1.19)
, f'ix) = Zh + 3 f'''(x I B
A |
< which is written more compactly in the form t
|
-3f +4af - f f
£, = —i—Ax 1*2 + O(h2), forward difference (1.20)
(S
Similarly, introducing equation (1.14) into equation (I.4) to
eliminate f''(x), we find
¢
fi_ - Afi_ + 3f1
f; = Z 2n 1 + 0(h?), backward difference (1.21)
(S
-107~
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The above procedure can be extended to obtair more accurate
expressions for the first and second derivatives. Such expressions
are presented in reference [47) for various order derivatives.

The derivative of a functiou in non-uniform spacing (Figure 1.3) can
also be approximated by finite difference using a Taylor series
expansion. A summary of the finite difference representation of the
first~ and second-order derivatives of a function f(x) in non-uniform

spacing is given below

2h, + h, h, + h, h,
L= Th, ey fu P THn, fiey TR, (hyeny) faes
forward difference (1.22)
. h, . h, + h, ; . h, + 2h, ]
1 h, (hy+h,) "i-2 hyh, “i=1  h, (hy+hy) "1 '
backward difference (1.23)
£ = i P Tk TP W
i hy (h+h,) i1 hyh, "4 h, (hy+hy) "i+y ’
central difference (1.24)

2 2 2
fy R (hoohp fimy " iy f1 by (hpehy fieg

central difference '1.25)
Using equations (1.22) to (1.25) is very cumbersome, and it mav lead
to loss of accuracy. A more elegant method, general coordinates

transformation, can be employed in the non-uniform mesh to avoid these

W,

;?#' problems. This transformation will be discussed in detail later.
o

.::N: 1.2 Errors Involved in Wumerical Solutions

I’- ‘.:

In numerical solutions using the method of finite differences, the

partial differential equation is approximated with finite difference

34 S0 ML A AR oo™ et A Ba® Eat 2o Bat 4.0 8.0 4.0 2 3-8 & B M4 22 i's d’a 8’2 8'2 R A
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expressions at each nodal point, and as a result the solution of the
differential equation is transformed to the solution of a set of
algebraic equations. WUc liave seen that, whenever a derivative is
approximated by finite difference using a Taylor series expansion, an
error is involved. Such an error is called the truncation error or the
discretization error. These errors appear because a continuous
operator such as the first, or the second-order derivative, is replaced
by a finite difference approximation. In addition, numerical
calculations are carried out only to a finite number of decimal places
or significant figures; as a result, at each step in the calculation,
some error is introduced due to this rounding-off, called the round-off
error.

Clearly, if the finite difference approximation is made by using
formulas having truncation errors of high order, the truncation error
at each step is minimum. Also, by decreasing the step size, the
truncation error is reduced for each step; however, a limit also is
reached at which further reduction in step size increases the total
number of calculations and as a result the round-off error may become
dominant.

Ideally, 1f it were possible to carry out the finite difference
calculations with extremely small steps and to perform the calculations
to an infinite number of decimal places, the resulting solution would
be exact. However, due to the cumulative effects of the rounding off
error and the discretization errors, the solutions obtained by the
finite difference method is expected to deviate from the exact result;
therefore, the solution computed is the numerical solution but not the

exact result. It is very difficult to determine the cumulative
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departure of the numerical solution from the exact result due to the
cumulative effects of such errors. Comparison of numerical solutions ‘
with exact analytic solutions reveals that, for most cases, the results
are very close indeed. After some experience with different methods
and different step sizes, a suitable combination can be chosen for the
numerical solution of a given problem.
I.3 Time Dependent Problem

The stability consideration plays an important role in the finite
difference solution of time dependent problems. There are geveral
schemes available to express the time dependent problems in finite
difference form. Each of these differencing schemes has its
advantages and limitations. We now discuss some of them by using the
one-dimensional time-dependent heat conduction equation as examples.
Explicit Method

The one-dimensional, time-~dependent heat conduction equation for a

finite region 0 ¢ x < L is

aT 32T (1
Yo k 3%z ° .26)
EY) oT
If 3x2 and 3c are replaced by the central and forward differences,

respectively, and using a uniform mesh size Ax in the x domain and At
for the time step, equation (I.26) can be rewritten in the finite-
difference form as

T(i,n+1) - T(4i,n) T(i-1,n) = 2T(i,n) + T(i+1,n)

: = k vE; . (1.27)

with a truncation error of 0(At)+0(Ax2). Where T(x,t) is

o ~110-
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represented by T(x,t) = T(iAx,nAt) = T(i,n). Solving equation (1.27)

for T(i,n+1) one obtains

T¢i,n+1) = rT(i-1,n) + (1-2r)T(i,n) + rT(i+1,n), (1.28)
kAt
where r = Z;; .

The equation is called the explicit form because the unknown
temperature T(i,n+1) at the time step (n+1) can be directly determined
from the temperatures T(i-1,n), T(i,n), and T(i+1,n) at the previous
time step. The explicit scheme provides a relatively straightforward
expression for the determination of the unknown T(i,n+1). The only
disadvantage of this method is that once k and Ax are fixed, there is a
maximum permissible step size At, which, by instability considerations
should not be exceeded. For example, when the boundary conditions at
x=0 and x=L are both of the first kind (i.e., specified temperature),

the restriction imposed on the parameter r is

(1.29)

o
1A
-
1A
[ SIS

That is, for given values of k and Ax, if the time step At exceeds the
1imit imposed by the above criteria, the numerical calculations become
unstable, as a result of the amplification of errors. Figure 1.4
illustrates what happens to the numerical calculations when the above
stability criteria is violated. In this figure, the numerical
calculations performed with a time step satisfying the condition

S

1
r=11 < 3 is in good agreement with the exact golution; whereas the

numerical solution of the same problem with slightly larger time step,
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which violates the above stability criteria, i.e., r=§>§ , results in

an unstable solution.
Implicit Method

The explicit method discussed above is simple computationally, but
very small time step should be used because of stability
considerations. Therefore, a prohibitively large number of time steps
may be required if solutions are to be computed over a large period of
time. It is for this reason that other finite difference forms, found
to be less restrictive to the size of time step At, have been
developed. One such scheme is the fully implicit method. We
1llustrate this method by considering the finite difference

representation of the heat conduction equation (I1.26). The partial

2T
derivative 32 is represented in finite difference form using the
aT
central difference formula, whereas the time derivative — is

ot

represented in the finite difference form using the backward difference
expression.
Then, the finite difference form of equation (I1.26) becomes

T(i,n+1) - T(i,n) T(i-1,n+1) - 2T(i,n+1) + T(1+1 n+1)

m = K oz . (1.30)

This is called an implicit form of the finite difference representation,
because to determine the unknowns T(i,n+1), a set of simultaneous
algebraic equations are to be solved. The advantage of the implicit
method is that it is stable for all sizes of time step At. Thus, there
is no size restriction on At. The only size restriction on At is due
to the consideration of the truncation error.

The truncation errors for both explicit and implicit forms of the

-113-
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finite difference representations of the heat conduction equation is
of the order (Ax2)+(At). But the actual accumulated error in both
methods need not be the same. Depending on the nature of the problenm,
one of the methods may be preferred to the other.
Crank-Nicolson Method

Crank and Nicolson [47] suggested a modified implicit method. In

this method, the heat conduction equation (I.26) is represented in

finite difference form by taking the arithmetic average of the right-
hand sides of the explicit form (1.26) and the implicit form (I.30).

Then, equation (I1.26) becomes
Tti=-1,n+1) - 2T(i,n+1) + T(i,n+1)

-k[
*2 AxZ *

T(i,n+1) - T(i,n)
at

T(i-1,n) = 2T(i,n) + T(i+1,n)
+ AxC ). (1.3

The advantage of this mehtod is that, for given values of the space and

time steps Ox and At, the resulting solution involves less truncation

\
f:. error due to At than the explicit and the implicit forms discussed
_;;f above. On the other hand the Crank-Nicolson form involves additional
7o
® computation.

12

: To provide a better insight to the physical significance of the

d

Crank-Nicolson representation, equation (I.31) can be written in a more

® general form by taking a weighted average of the two terms in the
Ryt
WT“ brackets
n'._':
v
»,
et T(i,n+1) - T(1,n) T(i-1.n*1) = 2T(1,n+1) + T(i+1,n+1)
3 at =k Bx?
325
o
"4
s
.
f:'
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T(i=-1,n) - 2T(i,n) + T(i+1,n)
Ax 2

+ (1-n) 1, (1.32»
where 0 < n ¢ 1 is called the degree of implicitness. Clearly,
equation (I.32) reduces to the explicit form given by equation (I.27)
for n=0, to the implicit form given by equation (I.30) for n=1 and the
Crank-Nicolson form (I1.31) for n=% .
Alternating-Direction Implicit Method

The implicit methods discussed above are advantageous to us because
of the superior stability properties. On the other hand, becuase a
large number of simultaneous equations need to be solved at each time
step, the computational problems become enormous when they are applied
to the solution of time dependent problems involving two or three space
dimensions. For example, for a three-dimensional problem with N
interior nodal points in each direction, there are a total of N3 nodes,
hence N3 x N3 matrix equations must be solved for each time increment.

The alternating-direction implicit (A.D.I.) method introduced by
Peaceman and Rachford (48], provides an efficient method for solving
problems involving large number of nodes. To illustrate the procedure,
a two-dimensional, time dependent heat conduction equation is
considered

92T 32T 1 9T

3%Z + 5;; = At in the region R (1.33)
To represent the space derivatives in finite difference form, the cent-

ral difference formula is used with an implicit and explicit difference

32T 32T 927
approximation alternatively for 3n2 and 5;5 . For example, if 3xZ
-115-
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32T
dy2
represented by an explicit approximation. Then, the finite difference

is represented in the implicit form, the derivative is

form of equation (1.33), to proceed the solution from the (n)th step

to (n+1)th step, becomes

1 T¢i,j,n*d1) - T(i,3,n) T(i=1,31,n+1) - 2T(i, j,n+1) + T(i+1,j,n+1)
K At - Ax2 *

T(i,j=1,n) = 2T(i,§,n) + T(i,j+1,n)
+
Ay?

(1.34)

The finite difference form of equation (I.33), to proceed the

golution from the (n+i)th step to the (n+2)th step, is written using

32T ) 32T
an explicit form for 3z and implicit form for 5;5 as

1 Tdi,3,n+2)-T(i, j,n+1) T(i-1,j,n+1) - 2T(1,j,n+1) + T(i+1,3j,n+1)
- = +
K At Bx2?

T(1,3-1,n+2) - 2T(i,§,n+2) + T(4i,j+1,n+2)
+
Ay?2

(1.35)

The procedure is repeated alternately in the subsequent time steps.

The advantage of the A.D.I. method over the implicit method results
from the fact that it reduces the number of equations to be solved
gsimultaneously for each time step. Consider for example a two-
dimensional, time dependent problem with N internal nodes along the x-
axis and N nodes along the y-axis. The A.D.I. method requires the
solution of N simultaneous equation N times for each time step, whereas
the implicit method requires the solution of N2 equation at each time

step. There are other methods, for example, the alternating direction
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; v explicit (A.D.E) method (491, the Douglas-Rachford implicit scheme
b (48]1,..., etc. The reader should consult these references for further

discussion of these methods.
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APPENDIX 11

NON-UNIFORM MESH AND GENERAL COORDINATES TRANSFORMATION

The solution of a system of partial differential equations can be
greatly simplified by a well-constructed grid. On the other hand, a
grid which is not well suited to the problem can lead to an unsatis-
factory result. In some applications, improper choice of grid point
locations can lead to an apparent instability or lack of convergence.
For many applications, a non~uniform mesh must be used in order to
obtain an accurate solution and to save computing time. One can solve
the problem in the physical plane (original plane) by applying the
difference formulas on the non-uniform mesh directly, or transform the
non-uniform mesh to a uniform mesh and solve the problem in the
computational plane. Generally, the coordinate transformation gives a
more accurate solution than mesh changes.

11.1 Non—Uniform Mesh

The simplest variation of the rectangular mesh system 18 obtained
by simply changing the mesh spacing in one direction at some point.
This would be done for the purpose of obtaining higher resolution (and
hopefully higher accuracy) in some region where the gradients were
expected to change rapidly. To illustrate this technique, we consider
the obvious method of changing from Ax, to Ax, between node points at
some node i=m, as shown in Figure II.1.

Expanding a function in a Taylor series forward and backward from i-m

gives
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tl
N af 1 34f 2 1 33f
» fots = Tn ¥ axlm 82 % 2 3x2|m 8%2° * § 30
of 1 34f ) 1 933f
fn-1—f--3Xm 1+28x2mAx1 " 6 ax3
9
of
The expression for ™ is obtained
x|m
from (II.1)
g ¢ af Ax 92f 2
- = —-— + — —
m+y fm-x Ax m(Ax1 2) ¢ 2 9x2 m(sz
vhere by 0(Ax3) we mean the largest of O(Ax,3)
[ \
of
ax|m gives
A o) Fary  facy | 122€) g2 - Ax?
Ox|m Ax, + Bx, 2 x2|m Ox, + Ox,
This means that the form
[
| ey ~ ey
3x|m bx, + Ox, °’
' is second-order accurate only if
Ox,2 _ Ax 2
—2 - 1 2
ol Bx, + bx, 1 ¢ 0wax, 2)
'.("

Note that, for sz very small, the accuracy at m deteriorates to first

c¢rder in Ax,.

The expression for the second derivative is obtained by multiply-

ing equation (II.2) by s2=(Ax,/8x,)2 and adding the result to (II.1).

Lol il Snh Bod Sol Bl Sl Snd Snfl il Aah tufh b Sah Sol Sng ol |

ax,3 + O(ax,4), (I1.1)

¥4

ax, 3 + O(ax,4), (I1.2)
m

by subtracting equation (11.2)

- 8x,2) + 0(Ax3),(I1.3)

or 0(Ax,3). Solving for

+ D(Ax2), (I11.4)
(I1.5)
(I1.6)




¢ ( 2 ., of ?zf 2
+ + = — - _—
oty 1+s )fm s fm_1 3 |m bx,(1-s) + 3%Z | m Bx,2 +
1 d3f 2 a
+gmmAx2 (bx, - Ox,) + OwAx4), (I1.7
gif . fm#1 + (1+52)fm + stm-: ) é{ ( 1—:_5 ) X
3xZ|m bx,? 3x|m bx,
+ Ol(ax, - Ax,), Ax2] . (11.8)

The resulting expression now requires s=0(1-Ax12) just to be
first-order accurate at i=m.
It is clear from the above equations that, unless the mesh spacing

is changed slowly, the formal truncation error is actually

degraded, rather than improved.

I1.2 Coordinates Transformations

Early work using finite difference methods was restricted to
problems where suitable coordinate systems could be selected in order
to solve the governing equations in that base system. As experience
in computing complex problem was gained, general mappings were
employed to transform the physical plane into a computational domain.
Numerous advantages accrue when this procedure is followed. For
example, when the untransformed equations are differenced in the

expanding mesh, the result is a deterioration of formal accuracy, as

ég we have seen; but the transformed equations may be differenced in a
JEE regular mesh (such as constant Ax, A;> with no deterioration in the
A3 formal order of truncation error, except that it will now be O(A;Z)
v Y

&: rather than 0(Ay<4), also, the body surface can be selected as a

b LY
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boundary in the computational plane permitting easy application of
surface boundary conditions. In general, transformations are used
which lead to a uniform space grid in the computational plane while
points in physical space may be unequally spaced. This situation is
shown in Figure I1]1.2. When this procedure is used, it 1is necessary to
include the derivatives of the mapping in the differential equation.
11.2.1 Simpie Transformations

In this section, simple independent variable transformations are
used to illustrate how the governing equations are transformed. As a
first example, the problem of clustering grids near a wall is
considered. Figure II.3a shows a mesh above a flat plate in which
grid points are clustered near the plate in the normal direction (y).
While the spacing is not uniform in the y direction, it is convenient
to apply a transformation to the y coordinate so that the governing
equations can be solved on a uniformly spaced grid in the
computational plane (X,¥) as seen in Figure II.3b. A suitable
transformation for a two-dimensional problem is given by

Transformation 1:

(11.9)

I
n
x

In{(B + 1 - (y/RI/IB - 1 + (y/h)]} ) 11.10)
1- InC(B + 1)/(B = 1)) v 1<¢B e (11

<
[l

This stretching transformation clusters more points near y=0 as the
stretching parameter 8 approaches 1.
In order to apply this transformation to the governing equations,

the following partial derivatives are formed

R RN
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-123-

R O 7 SN IR W A A SN e



2
PLEL S 'r".

“

P

2.
LR

gy

e A
ey

P P L] - [
) N’ﬁ)\’ },‘l '3) ",‘ﬁ g ’f’l”

B EREFE T FFTWEFFNEFFE ATy TE TR TR TTREREN STy ey v W T

9 3% 9 9y 9
—— = — a— + — —
ax - dx 3% ' ax 3y (11.11)
3 ax 3 9y 3
3y " 3y 2% ' 3y 3y ° (11.12)
wvhere
ax oy ox
aL = s = =0, = =0,
9x ox oy
. Y. 2
8nc¢ 3y T h{BZ - (1 - (y/MIZ}Inl(B + 1)/(B - 1) °
As a result, the partial derivatives simplify to
d )
% - 3% ° (I1.13)
2 3?) 2 1 )
3y - (ay 3y (11.14
If we now apply this transformation to the following equation
3u  du
ax ay - 0, (I1.15)
the following transformed equation is obtained
du (3?) du (11.16)
-_—+ _—) == = .
ax * oy’ 3y © O

This transformed equation can now be differenced on the uniformly

spaced grid in the computational plane. We note that the expression
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dy
for the derivative 5; contains y so that we must be able to express y
as a function of Y. This is refered to as the inverse of the
transformation. For the present transformation, given by equations

(I11.9) and (11.10), the inverse can be readily found as

B+ 1) - (B- 1B+ 1)/(B -~ 1)117¥])

Y2 TR F1/B - DIV v 1 (I1.18)
Transformation 2:

x=x, (11.19)

- ln((8+fY‘2a+1)/h]—2a]/(8-[y(2a+1)/h1+2a})

yrasi-a . (11.20)

Inl(B+1)/(B~1)]

For this transformation, if &=0 the mesh will be refined near y=h

1
only, whereas, if a=§ the mesh will be refined equally near y=0
(Figure 11.4). It has been shown that the stretching parameter B is

related (approximately) to the nondimensional thickness (8/h) by

1
B = 1 -¢8/mt1/z

0<¢Cé&/h<1 (11.21)

vwhere h is the height of the mesh. For the transformation given by

9y
equations (II.19) and (I1.20), the derivative 5; is

3y 28(1 - @)(2a + 1)

3y - hiBZ - (y(Za + 1)/h = 2a1Z1Inl(E + 1I/B - 11 ° (11.22)
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and the inverse transformation becomes

X =X, (11.23)

(B + 20)[(B + 1)1/(B - 1)1y ®)/(1-a) _ g + 2¢
=h (2a + {1 + ((B + 1)/(B - 1)](y—ﬂ7ﬁ—a)} . (II.24»

A useful transformation for refining the mesh above some interior
point y. (see Figure I1.S) is given by

Transformation 3:

1
n
x

’ (11.25)

<
L]

1 y
B+ - sinh™! [(— - 1)sinh(«B)] , (11.26)
T Ye

wvhere

1 ( 1+ (e% - 1y /h)

B = o Inl I et T Doyum ) 0<T<(w® (11.27)

27

In this transformation, T is the stretching parameter which varies

from zero (no stretching) to large values which producc the most

ay
refinement near y=y.. The metric 5; and y become

a3y sinh(1R)

3y Tyl + [(y/ly) - 1)2ginh2(xB)}1/2 * (11.28)

sinh(w(y - B)]
sinh(1B)

y =y (1+ (11.29)

For our final transformation, 8 simple transformation which can be

LU, O A
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used to transform a nonrectangular region in the physical plane into a
rectangular region in the computational plane, as seen in Figure II.6,
will be examined. The required transformation is

Transformation 4: (Figure 11.6)

x (I1.30)

)
(1]

y
hox) (I1.31)

|

The known distance between the lower boundary and the upper boundary
(measured along a x=constant line) is designated by h(x). The

required partial derivatives are

3 3 _hx)d

ax = 3% 7 hoo 35 (1192
3 12 (11.33)
8y  h(x) 3y’ :

where h'(x)=dh(x)/dx. Hence, equation (I].15) is transformed to

=0 . (11.34)

11.2.2 Generalized Transformation

In the preceding section, the simple independent variable
transformations which make it possible to solve the governing equations
on a uniformly spaced computational grid were examined. Let us now

consider a completely general transformation of the form
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t N E = E(x,y,2), (11.35)
L4

:: n = nix,y,z), (11.36) |
. R

L}

. L = Tix,y.2), (11.3D)
o

N

\:

) which can be used to transform the governing equations from the

:- physical domain (x,y,z) to the computational domain (§,n,g). Using

7,
Y the chain rule of partial differentiation, the partial derivatives

1

.'F become

z ) 3 ) . ) ‘ 28y
- — = — — —

N ax Ex at Nx an Cx Y (1I.
4° 3 3 3 3 )

— = - i —_—

k- 3y Ey Y3 Ny an Cy ac (I1.39
5
% 2 2 2 2 (11.40)
. e . ° . il )
. 3z tz 3 "Mz 3yt Lz

&
&

! The derivatives (E,, Ny, Cx: Ey, Ny, Ty, &z, Nz, Cz) appearing in these
o

: equations can be determined in the following manner. We first write
! the differential expressions

)

o8
}

¢
b df = E.dx + Eydy + Eydz (11.41)
e

- dn = n,dx + nydy + nydz , (11.42)
N

B dg = Gudx + Tydy + Cpdz . (11.43)
2




which in matrix form become

dg L 3% Ey | 3 dx
dn = Nk Ny Ny dy . (11.44)
dg Cx 8y G2 dz
In a like manner we can write
dx xc xn xc dE
dy | = Ye Yn Yt dn} , (11.45)
d
z zE zn zc dg
Therefore,
Ex Ey Ez xE xn xc -1
Nx Ny Nz = YE Yn Yc =
Cx Cy &2 z[ zn z(
- z - - ) -
Yo% T Ye%n *nZt ~ *cZn *n’t T XeIn
= J | -( - ) - -( - ) (11.46)
Ye%r T B Xt T %% XV T %
- —( - ) -
Ye%n T Yo% i 4 T S SO 24 W 4
Thus, the derivatives are:
= J( - ), (11.47)
£x YnZc T Yen
LY
>
3]
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ok 0a ool 4\l cad eaf el ian A, ‘g

¢ = =J( - ), (1I. )
™ £y x“zc xczn 11.48
ﬁ E, = J(xnyc ~ nyn)' (11.49)
"G'
. = =J( - ), (11.50)
; Ny J yEzc yczt 11.50
.‘ Ny = J(szC - szE)' (11.51)
¥
_ = =J¢ - ), (11.52)
‘ n, J XEYC nyE 11.52
“¢; = Jo ) (I1.53)
§ Cx = 202 T VPl -
Q _ Cy = -J(x{.zn - xnzz), (I1.54)
29
b)
L)
= J( - ). (11.5%)

X Cz *Vn T X0t
)
L)

o

where J is the Jacobian of the transformation

) Ex Ey Ez
. 9(E,n,T)
J sy |z ] (11.56)
Ty Cy €2

which can be evaluated in the following manner

-1
alx,y E xn xc
= -‘ = = =
J=1/J v( 5cm C) ) Ye Yo Ve (11.5T)
ZE Zn Zc
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= 1/lx . (y z_-y )], (11.58)

) = x ( - ) + x ( -
E 0% Ye% " T Xa Vet Ve T % YeEn Ve

The coordinate derivatives can be readily determined if analytical

expressions are available for the inverse of the transformation:

x = x(£,n,0), (11.59)
y = Y(Epnyc)r (II-BO)
z = Z([,TI,C), (11.61)

For a two~dimensional problem, the derivatives of a function

f(x,y) in the transformed plane (E,n) are:

f, = (ynfE - yzfn)/J , (11.62)
fy = (foﬂ - xnfc)/J , (11.63)
f.. = (y 2f__ -2 £+ y 2f )/J2 +
xx yn EE ytyn R nn
"3
+ [((y 2 -2 + 2 Y(x f_ - x_f ) +
. "n Ve 0 T e " ' £En
N
N
N
. (y 2 -2 +y.2x My f -y £1/J3, (I1.64)
e T V0%t T Ve " ety T Yo't
[« + o - £ - £__1/J2 +
€V T e en T % an T *n¥n'Ex
C -« + ) + Iy £_ - f )/J3 +
Wnee T 7 T e %en T X e T YT
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b
‘:-
~ + 1 ( + y,  + Ixf = x £.)/33,(11.65)
> o XYnee = X0 T XY Yen T *e Ve eTn T ik
(

K™,
> foo = (x 2f__ - 2x.x f__+ x_2f )/J2 +
. 44 n EE E'n &En £ nn
‘-’ + [(x 2y = 2% x vy, *+ x. 2y Mx f - xf )+
N n &R E'n’En E'nn nk £n
\

-

LY ..

. + (X 2x__ - 2x.X X, + x 2x )y f -y f.)1/J3, (I11.66)
5 n EE £*n%en T e ¥’ YeTn T Mne

L

N The Laplacian is given by
1a 2f = (A, f,_ _-2A,f_ +A,f + [(A -2A +A ) -

‘f V2 = (A g~ 2hofgathafngrsgz + TR X m2Ro%g g As% g

(y.f -y f_) + (A -2A +A. y(x f_-x.f 11/J3, (I1.67)
. YefnVn'e 1Ygg ™Az *AsY g Xnfe ™% Ty

¢ K4
-

i or
~

‘Y
-

L 4 2f = (A, f__ - 2Af__ + A, f +Af + Af )/J2 (11.68)
v 1fgg = Zhafgn ¥ Rafy * Ad sfg

:', vhere
%

‘;(5
L)

: A, =x 2 +vy 2, (11.69)
: 1 n Yn

)

5 (11.70)
e A = X + y ’
Q‘ 2 = Xg*n T Ye¥q

; A 2 4+ y 2 (11.71)

; 3~ XE yE ’ .

Ph ¢
. Ay = (Yehe = xgA7)/d (11.72)
1)

L)

1) .
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v
|

= (x Ay -y A, (11.73)

= A - 2A + (11.
Ag 1xEE 2 2xEn Aaxnn . 11.74)
A, = A - 2A + A . (11.71%)
Likewise, the Gradient is given by
f = (y f_ - ) + (x_f - e, ] . (I11.76)
v yn E yEfn e, xE n xnfE e,1/J II
and the Divergence is expressed by
F =Ly (F,)_ -~ (F,) + (F,) - (F.) J . (I1.77)
v Yp'Fadg = YgtFady ¢ xg(Fpdy = X (Fa)g/ I
vhere F = F.e, + Fe, . (I11.78)
Finally, the Curl may be vwritten as
Curl F = eatyn(l“z)E - yE(Fz)n - x[(Fl)n + xn(F‘)E]/J , (I1.79)

where J = x - xnyE is the Jacobian of the transformation, and the

£”n
subscripts (x,y,E,n) denotes partial derivatives in those coordinates,

respectively.

For cases where the transformation is the direct result of a grid

<3

e
{;f generation scheme, the metrics can be computed numerically using
o
N
.ia, central difference in the computational plane.
v v,
. »
s The general coordinate transformation can be employed to
3,
LA
E:jv transform very complicated curvilinear coordinates to simple
s Y
N
2
L'y }
o
o -136-
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( 9 rectangular coordinates. Some examples which transform the problem in
] physical domain to computational domain are given in Figures II1.7,8,9.
t The detail and more complicated transformations are found in [49,50].
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Figure II.7 Rectangularization of computational grid.
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Figure 11.9 Three—dimensional coordinates transformation.
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APPENDIX 111

ENERGY BALANCE METHOD

The subjects of thermodynamics and heat transfer are highly
complementary. For example, heat transfer is an extension of
thermodynamics in that it considers the rate at which energy is
transported. Moreover, in many heat transfer analyses the first law of
thermodynamics (the law of conservation of energy) plays an important
role. In our application of the conservation laws, we first need to
identify the control volume, a fixed region of space bounded by a
control surface through which energy and matter may pass. With respect
to a control volume, a form of the energy conservation requirement that
is most useful for heat transfer analyses may be stated as follows.

"The rate at which thermal and mechanical energy enters a control
volume minus the rate at which this energy leaves the control volume
must equal the rate at which this energy is stored in the control
volume."

T1f the inflow of energy exceeds the outflow, there will be an
increase in the amount of energy stored (or accumulated) in the control
volume; if the converse 1s true, there will be a decrease in energy
storage. If the inflow of energy equals the outflow, then a steady
state condition must prevail in which there will be no change in the
amount of energy stored in the control volume. For the heat conduction
problem, the inflow and outflow energy of the control volume 1is the
heat flux Q=-kVT. The law of conservation of energy is the key concept

of the energy balance method.
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{ III.1 Energy Balance on the Cavity Boundaries (Figure 3.3)
o}
i‘r On face AB (Figure III.1)., Let us examine an arbitrary node
Xl
:tﬁ P(i,j), on the face AB, surrounded by nodes R, S, and W. When heat
iy
V) conduction from the boundary nodes R or W to P is examined, we observe
.\-
LT that the area available for heat flow is only [(Ay/2)-1], although the
i:j distance across which heat is conducted is still Ax. Thus we have
CaNCa
o 81,30 ~ Tha,
:ix Qgap = kI(Ax) by , (III.1)
N# /2 hai-1, ) - 4, ) .
' Quap = kI( y - , (III.
"o
AN
".\’ I, . . I
> T (i+1,3) = T (4,1
Sy Qgap = kI(AyIZ) A . (II1.3)
00
¢
'::ﬂ The rate of change of internal energy 0? in the time interval At at
Y
D P(i,j) is
\::'.‘
7 A
‘ ) ™ 1,j,m - TH, j,n=1) ,
_\:: Up= pIcI(Ax Ay/2) At . n=1 (II1.4a
5]
Lo
4
L ) ath 4, 3, m-41 (4, 3, 0-+T 1, 3, n-2)
L, Up= p_c_(OxAy/2) .n>1 (I11.4b)
® 11 25t
s .
:::, From conservation of energy, Up = Qg We obtain
*-
N
e : :
A2 T €i,j,m) =T°(i,j,n"1) + AB, , n=1 (I11.Sa)
2
-2 1 1 1 I
- T (i,j,n) = 3 (-T (1,j,n-2) + 4T (i,j,n-1) + 2AB,]1 , n>1 (III.Sb)
,‘?:
.'*.
(gt
~$. vhere
~ .
~7r
i
%
"
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Figuwe III.1 Energy balance on face AB.
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L‘LL.,-
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20

»
a

Ath b 1
AB, = —= [2[T (i,j-1,n-1) - T (i, j,n-1)1/4y2

c
pII

0

s + tTh e, 5,01 - 2T5i, j.n=1) + T (i-1,3.n-1)/Ax2} . (I11.6)

TR
b

‘\.’\ LY

The dimensionless forms were given in Equations (3.40a,b).

T %
J‘.‘

Lo

On face AC (Figure III.2)

11 16 0
Ay, +Ay, T "(i-1,j) - T "(1i,j) )
Quop = k() o ' (I111.1)

b
LAYHESN

[

1, 5-0 - T N,
ay,

’ (I11.8)

it

Qgop = k (Bx/2)

Uy
A

Ay By N %

™1, 5+0 - ™, p
by,

o

(II1.9)

A2 LA

Quop = k  (Bx/2)

e,
-
g

and

E—y

Pl AP AP

™, 5, m-1 0, 3, D
At

Up = p__c__[Ox-(Ay,+Ay,)/4] , n=1 (I11.10a)

11 11

%

darae. \ . TUCLREREM b

31 (1, 5, m-a1 (i, 3, n-0+T 0, 3, nm2)

Up = pIIcII[Ax-(Ay1+Ay2)/4) 28t

- l.

o l"‘l.{

n>1 (1I1.10b)

" a1

R

UP = Qgum gives

s v
. L
'u"-'

T'¢1,j,n-1) + AB, , n=1 (III.11a)

1]

™1, 5,

1
5 T 11, 5,0-2)44T7 01, 5,0"1)+28B,0,  m>1 (II1.11b)

"

™, 5.

where
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Figure I11.2 Energy balance on face AC.
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20tk
AB, = —H (et -1, 3,01 - T4, 5, n-1) 1/8x2

pIIcII

+ [Txx(j,j—l,n—i) - TII(i,j,n-i)]/(Ayt2 + AyiAyz)
+ (1M, 41,01y - TII(i,j.n-i)]/(AyiAyz + Ay,2)) . (111.12)

The dimensionless forms were given in Equations (3.42a,b).
On face BD (Figure 111.3)
8y, *8y, T i,y - 8,y

Qrsp = k  (—1 =5 e , (I11.13)

T, -0 - TG, g

Qsap = k__ (Ax/2) &) , (I11.14)
T, e - 7%, (11159
Onop = K (Ax/2) ™ , 1

and

T, 5,0~ 5, 01
At

Up = pIIcII[Ax'(Ay1+Ay2)/4] » N=1 (I111.16a)

3T“(i,3,n>-4T”(i,J,n-1)+TI‘(1.J,n-z>

Up = pIIcII[Ax-(Ay1+Ay2)/4] 2AL

n>1 (III.16b)

CP = Qgum Blves

™, 5 = %4, 4,010 + AB, , n=1 (III.17a)
11 1 I1 11
T, g = 3 0-T (1, 3,n=2)+4T (4, 3.,n=1)42AB,1 , n>1 (I11.17b)
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Figure II1.3 Energy balance on face BD.
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20tk

5 (et laitg, i, n-0 - T, 5, n-1)1/6x2

AB, .
I1 I1

+

(T i, 5-1,0-10 = TG, g, 010 1/¢8y, 2 + by, by,)

+

(T, 3+1,0-1) = T N4, 3,n-1)1/ ¢y, By, + Ay,2)} . (I11>18)

The dimensionless forms were given in Equations (3.44a,b).

On face CD (Figure I11.4)

™, 5+ - 704,

Qnop =k (Bx) % . (II1.19)
T G-1, 0 - G,

Qusp = k  (8y/2) i , (111.20)
T+, - G,

Qrop = Kk, (By/2) e , (111.21)

and
. ™1, 5,m - T, j,n-D
Up = p_.c__(Ax.by/2) . n=1 (I11.22a)

I1 11 At

31t i, 5,m - a4, 5,01 + T, 5, 0-2)
20t

. ' )
Up pIIcII(Ax Ay/2

n>1 (II1.22H)

ﬁp = Qgum glves

1, 3,m = T, 5,n-1) + AB n=1 (I111.23a)

4

.
Qb

) e T I
LA .‘$'.'-"-n" "’\f'&*k"‘\'.




rmwmmmmw‘wwm‘.YEW\v,'i‘v_rr.,,,,,’r’r_ryv e o e— , ,-v-“
L~
®
-
wii-1,3) P(1,) R(1+1, )
- - -—
0 ——— ———
B % Ay
\\ 1
} = ]
L~ . \
2 0y
4
L
L J
A
Figure 111.4 Energy balance on face CD.
(%
L7 ]
(o -149-




»

-’:,’!"

2 e PR \,- ) \Jﬁwﬁ O e \f%}?

11,. . 1 11,. . 11, .
T "(i,j,n) = 5 (-T “(i,j.,n=-2)+4T (1,J.n-1)+2ABq] , n>1 (III.23b)
where
Atk
AB, = ——— ([T 7 ¢i-1,3,n-1) = 2T (4, 5,01 + T' it 3,n0-1) 1/0x2
[ C
11 I1
+ 20T L 341,010 - T4, 5, 0-103) (111.24)

The dimensionless forms were given in Equations (3.46a,b).

I11.2 Energy Balance at the Corner of the Cavity (Figure 3.3)

If one has a two-dimensional configuration that looks like the
cross section of two walls meeting at a corner, the nodal point at the
corner so formed is called a reentrant corner.

Corner A. The node P in Figure III.S is located at a reentrant

corner. The nodes N, R, S, and W are called exterior corner nodes.
Observing that the areas available for the flow of heat from N to P
and from R to P are éf -1 and > -1, respectively. The heat fluxes

2 2

toward the corner point P(i,j) are:

kI+kII T(i—l'J) - T(i,J)
Qusp = (-—E—*—) (Ay) A , (111.25)

T(i,j+1) - T(i,J)

Quop =k (8x/2) ™ : (III.26)
T(i+1,j) - T(i,j) 7)
Qrop = k (8y/2) e : (I11.2
T(i,j-1) - T, )
Qgap = k (&%) (I11.28)
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Figure I11.5 Energy balance at corner A.
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7,

and the rate of change of internal energy is

™
n
>

-
r
k32"

—

T(i,j,m~T(, j,n-1)

(pICI/Z + pIICII/Q) (Ax - Ay) At . =1 (II1.29a)

s

Up

.
A TN
4' . '. ,’

W
5 f/"'.."r'

3T(i,j,m-4Ti, j,n~1)+T(i,j,n-2)
(pIcI/Z +p__c_/4) (Ax-Ay) - 20t ;

1111
n>1 (II1.29m

U

2

< X

From conservation of energy, Up = Qgum+ One obtains

> L

K N o

% % 5 S

T(i,j,n)

’ A E
o

T(i,j,n=1) + ABg , n=1 (I11.30a)

oy

ALl

LY

1
7 [-T(i,3,0-2) + 4T(i,j,n-1) + 2ABg] n>1 (I1I.30b)

T(i,j,n) 3

N4 A o
> & m B

5

LR

where

<,
225
5

- At/2
= - -13=T(1 - 2
ABg (p1c1/2+p11C11/4) {(kr+k11)[T(1 1,3,n-1)-T(i,j,n-1)1/Ax

k [T 341,0-1-T(4, §,0-1)1/8y2 + k [TCi+1,§,n-1)

b.
+

Te1,3,n-1)1/Ax2+2k [T(i,j-1,n-1)-T(4,3,n-1)1/8y2}. (II1.31)

i Corner B (Figure III.6)

W T(i-1,3) - T4, §)

e, Quop = k (8y/2) A , (111.32)
.

i

L]

{&- T(i, j*1) - T(i, ) (I11.33)
', . -

':;_ ON"P kII(AX/Z) Ay R .

kI+kII) (Ay) T(i#i,J) - T(i,J)

Qrop = (—3 = , (I11.34)

TR,
RAAART
"

Py
1w YT,
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and

Up

Up

(pch/Z +p

(pIcI/Z +p ¢

T(i,j-1) - T(4,j)
Ay !

T(i,J,n)—T(i,j,n-l)

(II1.3%)

IIcII/Q)(Ax-Ay)

3T(i,j.n)—QT(i,j.n-1)+T(i,j,n-2>

‘ n:1 (111.363)

- II/4)(Ax'Ay)

UP = Qaum gives

T(i,j,n) = T(i,j,n-1) + AB, ,
1
T, 3,0 = 3 =T(1,3,n~2) + 4T(i,3,n~1) + ZABG) .
where
AB At/2 X ) 2
6 = (p1°1/2+911c11/4) [kI[T(i—i.j.n-i - T(i,j,n-1)1/48x

+ kll[T(i,J+1,n-1) - Tdi,3,n~1)1/0y2 + (kI+kII)[T(i+1,j,n-1)

- T(i,j,n—i)]/Ax2+2kI[T(i.J-l,n-i)-T(i,J,n-i)]/Ayz} S(III.38)

Corner C (Figure III.T)

Quop = k

- ,I':'.'-'.f'\
AP

+EVE VA |

A A A

AN AT IS G T A
L -

@ T i-1, 9 - T4, 3
118! Ax !
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n>1 (II11.36b)

n=1 (I11.37a)

n>1 (111.37»

(III.39:
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- TG, 40 - 10, )
. Qqap =k (Bx) & , (111.40)

- T e, - Ty, )
’ anp klI(Ay/Z) BAx y (I11.41)

T, -0 - T, g
Ay !

(II1.42)

LS
- Qgsp kII(Ax/Z)
-

and

) 3 TII(i,j,n) - T4, 5,01

11113 At ’ n=1 (III.43a)

R o S e avy 3TII(1,j,n)—éTII(i,j,n—1)+TII(i,J,n-2)
P = P11 ay 24t ’

n

n>1 (I11.43b)

i ] ﬁp = Qgum gives

T, 5,n-1) + AR, | n=1 (III.44a)

L T4, 5,

1
3 [-TII(i,j,n-2)+4Tll(1.j.n-1)+2AB7] + ™1 (III.44b)

e
P,
‘,2 ™, 5w
ﬁ
)
L4

vhere

%%

391 ICII

AB., = (2T i1, 3,0-0-3T"7 04, 5, n-1)+7 7 (141, 3, n1) 1/Ax2

f

AR

+ 174, y-1,n-1) - 3t (e, j.n-1) + 2T (4, 3+1,n-1)1/8y2)

“
fv'.f

(I11.45)

-
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L R e

P

S

-156-

~‘
= R

..

Q0
'o, RN X

"y |
'.":?"'« N "-“"o"'o el R e SRR e '::”.ﬁ:"o'ﬂ fohit 'c'.\‘.n'

':‘.‘." ‘«‘“"n t"‘t .‘o“' u‘




i e Ak T A L4 8 AvR e As aa A s s bl sl del ded Ash A S0 S auL B SuS Aol vt amA aid-aih AME'RE- M- MaiLAe ket et Ly g sk oh A Be A A 2% ki Aen Asa @ e Aoy may g |

'\‘

-
' Corner D (Figure III.8)
L
k. (By/2) a1,y - TG (I11.46)
Q‘l"P = II(AY AX ’ .
‘ T G, 5+ - TG, 1147
Qnop = K, (&%) ™ , .
TG+, - TG,
11 Ax
o
™G, -0 - T, 11149
Qgsp = K, (8x/2) & , .
‘“:
and
o 3 ™, 5,0 - T, j, 1) 115080
p = pucn(4 Ax . Ay) At , n=1 .50a
o
o 3 3T (4, 3, m-at (4, j, -0+ (4, 5, n-2)
P PiCirs bx.4y) 26t )
n>1 (111.50b)
)

UP = Qgum gives

T (1,3,m = T4, 5,01 + ABg , n=1 (III.51a)

™1, 5,0 = % (-T2, §,n-20+aT 7 (1, j,n-1)+2ABg) , n>1 (III.51b)
where

AB, = gg&%ﬁi; (eti T i-1, 3, 0-0-311 14, 3, n-1+21 (a4, §,n-1) 1/0x2

+ T4, 51,010 - 3T 01, j,n-1) + 2770 ¢4, j+1,n-1)1/8y2) . (111.52)

-157-




r*v' i abl okl ald ok atd oie oth oth ot o am g & 'R g 4 o A VS 4'a s o n s o

7T Laitach o oo o |
-

A
S

S1, J-1) |

Figure II1.8 Energy bal--

-158-

LIPS I S I ] - w
i

w e 1 G Yhe 0w JO . OO0 g
& ) \.\.t"l.t t':‘!'l.!‘l‘-’I':'::!‘:.’.‘.- . U‘. » J l:,l‘!‘:l.:""', ,':'l'. ' hklt"Oh.Ib.‘“'x‘Y, .‘,:' !&‘:""



WoeWLE WS W W ST WY W aE e

!5‘

»
"

o

L., -lv,l_-"v_c ., L4
""b'-,\\"l‘v""-'h AT )

J‘

The dimensionless forms for the corner points A, B, C, and D were given
in Equations (3.48a,b, 3.50a,b, 3.52a,b, 3.54a,b), respectively.

I11.3 Energy Balance on the Surface Boundary (Figure III1.9)

For the explicit scheme, the time step is limited by the stability
criterion. As a result, the moving asperity at some time may not be
right above the grid points. To alleviate this situation, one can
also use the energy balance method to describe the surface boundary
condition.

The heat fluxes toward P(i,j) from material points N, R, and W are

Thii-1,1 - MG, D

Qusp = k (By/2) = , (111.53)
thai,2) - Tha,»
Quap = K (&%) % , (111.54)
T+, - TG,
Qrop = k (8y/2) = ) (111.55)

The exterior heat which is conducted into the neighborhood surface of

the boundary point P(i, j), which is under the asperity, is

Qext. = Q(0.5Ax + h)/unit thickness , (II1.96)

vhere h is less than Ax/2. The formulation thus takes care of all
cases when the asperity end points do not fall on the grid point. The
rate of change of the internal energy 0p in the interval At at P(i,j)
is

™1, 5,m - 70, 5,01
At ’

Up = p c (Bx-8y/2) n=1 (111.57a)
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31 (i, j,m - 4T (i, 4,n-1) + T' (i, §,n-2)
20t

Up = pc (Ox-8y/2)
n>1 (ITI.57b)
From conservation of energy, ﬁp = Qgum: ONe obtains

2q(Ax/2+h)At

T1i,1,n-1) + — ———— + AB, , n=1 (111.58a)

1
i )
T ¢i,1,n pICI! By 9

it

2q(Ax/2+h) At
pIcIAxAy
n>1 (I11.58b)

i, 1,m

H

1 I,. . S
(-T"(1,j,n-2) + 4T (i,j,n-1) +

3 + 2AB,1,

where

Atky g 1,. 1,
ABg = o c {[T (i-1,1,n-1) - 2T (i,1,n-1) + T (i+1,1,n-1)1/06x2
I1
+ 2T, 2,01 - TR, 1,0-1)1/8y2) . (111.59)

The dimensionless forms for the surface boundary were given in

Equations (3.56a,b).
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APPENDIX IV
THE PROGRAMS TO COMPUTE THE TEMPERATURE AND THE STRESS
FIELDS SOLUTIONS
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MAIN PROGRAM
TEMPERATURE FIELD OF A LAYERED MEDIUM WITH A CAVITY, THE TOP
EDGE OF THE CAVITY IS AT THE INTERFACE

IMPLICIT REAL*8 (A-H,0-2)

T,TT,TIT = TEMPERATURE IN THE CURRENT, PREVIOUS ONE, AND
PREVIOUS TWO TIME STEPS

FX & FY = HEAT FLUX IN X & Y DIRECTION, RESPECTIVELY

Q = SURFACE HEAT INPUT

X & Y = COORDINATES IN PHYSICAL PLANE

XS,YE,XSS,YEE, ... = THE DERIVATIVES OF THE COORDINATES IN
PHYSICAL PLANE WITH RESPECT TO THE COORDINATES IN COMPUTATIONAL
PLANE

DIMENSION T(14S5,33),TT(145,33),TTT(145,33),FX(145,33),FY(145,33},
AQ(145),X(145,33),Y(145,33),XS(145,33),YE(145,33)

DA,DG,SIG,TAU = THE COEFFICIENTS DEFINED IN TEMPERATURE EQUATION

DIMENSION XSS(14S5,33),YEE(145,33),DA(145,33),DG(145,33),
ASIG(145,33),TAU(145,33)

TS,FXS,FYS = TEMPERATURE AND ITS GRADIENTS IN THE CORRESPONDING
POINTS IN STRESS FIELD

DIMENSION TS(67,35),FXS(67,35),FYS(67,35)

COMMON /AS4/ RL1,RLZ,RLI,RLC,RMU1,RMUZ,RMUI,RMUC,EX1,EX2Z,
AEXI,EXC,HAK,RHC

COMMON /ASS5/ DV,DL,DIFF1,DIFFZ,COND1,CONDZ,BETA,R1,R2,
AALPHS,DX,DY1,DY2,DT,R11,R12,R21,R22,A1,A2,A3,A4,A5,A,AA,A6,AT,AS
COMMON /AS6/ DTR1,DTRZ,M1,M2,N1,N2,MM1,MM2,NN1,NNZ,NA1,NAZ,
AMA1,MA2,K1,K2,K3,NTE,M122,M222,M112,M212,N121

COMMON /AS71/ 1D2,1D21,1D3,1D31,12,J2,13,J3,14,J4

I1 & J1 = TOTAL GRID POINTS OF THE TEMPERATURE FIELD IN X & Y
DIRECTION, RESPECTIVELY

I1=145
J1=33

LI1 & KJ1 = TOTAL GRID POINTS OF THE STRESS FIELD IN X & Y
DIRECTION, RESPECTIVELY

LI1=67

KJ1=35

12=11-1
13-11-2
J2=J1-1
J3-J1-2
[4=11-3
J4=J1-3

M1 & M2 = X COORDINATES OF THE CAVITY CORNERS
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M1=33
M2=64

N1 & N2 = Y COORDINATES OF THE CAVITY CORNERS

eNeKe!

N1=14
N2=24
MM1=M1-1
MM2=M2+1
NN1=N1-1
NNZ=N2+1
NA1=N1+1
NAZ=N2-1
MA1=M1+1
MAZ2=M2-1
M122=M1+2
M222=M2+2
M112=M1-2
M212=M2-2
N121=Ni+1

K1 = LAYERED THICKNESS

anon

K1=N1
K2=K1-1
K3=K1+1
ID2=8
1D21=1D2+1
ID3=140
ID31=1ID3-1

C NTE = FINAL TIME STEP
NTE=121

DV = TRAVERSE SPEED OF ASPERITY

eNeXe!

DV=6.D2

DL = ASPERITY WIDTH

k
aO0n

e DL=1.D-2
o

COND = THERMAL CONDUCTIVITY

[eNeNe!

COND1=1.213D0

COND2=1.213D0
COND1=(COND1+COND2)/2.D0
CONDC=(2.D0*COND1+COND2)/3.D0

DIFF = THERMAL DIFFUSIVITY

Oonn

DIFF1=4.29D-3

L% ] T
" L4 -'\o:'.' '~'q-- e AL RPEAE S A
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[eNeKe!

OO0

DIFF2=4.29D-3
DIFFI=(DIFF1+DIFF2)/2.D0
DIFFC=(2.DO*DIFF1+DIFF2)/3.D0

RNU = POISSON'S RATIO

RNU1=0.285D0

RNU2=0.285D0
RNUI=(RNU1+RNU2)/2.D0
RNUC=(2.DO*RNU1+RNU2)/3.D0

E = YOUNG'S MODULUS

E1=3.6D17

E2=3.6D17
EI-(E1+E2)/2.D0
EC=(2.DO*E1+E2)/3.D0

RHO = MASS DENSITY

RHO1=9.31D-3

RHO2=9.31D-3
RHOI=(RHO1+RHO2)/2.D0
RHOC=(2.D0*RHO1+RHO2)/3.D0

EX = THE COEFFICIENT OF THERMAL EXPANSION

EX1=6.29D-6

EX2=6.29D-6
EXI=(EX1+EX2)/2.D0
EXC=(2.DO*EX1+EX2)/3.D0

RMUF = COULOMB COEFFICIENT OF FRICTION
RMUF=0.5D0
RMU & RL = LAME CONSTANTS

RMU1=E1/(2.D0*(1.DO0+RNU1))
RMU2=E2/(2.D0*(1.DO+RNU2))
RMUI=E1/(2.D0*(1.DO+RNUD))
RMUC=EC/(2.D0*(1.D0+RNUC))
RL1=2.DO*RMU1*RNU1/(1.D0-2.DO*RNU1)
RL2=2.DO*RMU2*RNU2/(1.D0-2.DO*RNU2)
RLI=2.DO*RMUI*RNUI/(1.D0-2.DO*RNUI)
RLC=2.DO*RMUC*RNUC/ (1.D0-2.DO*RNUC)
C2-DSQRT (RMU2*1 . 2D1/RHO2)

HAK =RMUF*DV*DL/COND1
RHC=RHO2*C2**2

BETA=COND2/COND1

R1=DV*DL/DIFF1

R2=DV*DL/DIFF2

ALPHS=DIFF2/DIFF1

DX=0.2D-1




[eNeoNe!

100

31

32

DY1=0.6D-2
DY2=0.2D-1

DT = TIME STEP

DT=0.1D-1

R11=DT/(R1*DX*DX)
R12=DT/(R1*DY1*DY1)
R21=DT/(R2*DX*DX)
R22=DT/(R2*DY2*DY2)
A1=1.DO+BETA/ALPHS
A2=1.DO+BETA

A3=A2/A1
A4-=1.D0-2.D0*A3*R11-2.D0*A3*R12
AS5=0.5D0+0.25D0*BETA/ALPHS
A=1.D0-2.D0*R21-2.D0*R22
AA=1.D0-2.D0*R11-2.DO*R12
A6=0.5D0*AZ2*R11+0.5DO*BETA*R12+0.5D0*R11+R12
AT=R1+BETA*R2

AB=A2/A1

DTR1=DT/R1

DTR2=DT/R2

CALL XYLCT(X,Y,XS,YE,XSS,YEE,DA,DG,SIG,TAU,I1,J1)

NC=1

NT=1

RT=NT+1
TIME=(NT-1)*DT

CALL QIN(DX,DT,NT,I1,Q,1I,JJ)

CALL TEMP(T,TT,TTT,Q,FX,FY,X,Y,XS,YE, XSS, YEE,DA,DG,SIG, TAU,
AII,JJ,NT,I1,J1)

NC=NC+1
IF(NT .NE. NTE) GO TO S

CALL MAP(TS,FXS,FYS,T,FX,FY,I4,J1,LI1,KJ1)

DO 31 J=NN1,NA1

WRITE(6,*) J

WRITE(6,*) (T(I,J),I=MM1,6HAL1)

WRITE(6,*) (FX(I,J),I=MM1,6MA1)
WRITE(6,*) (FY(1,J),I=MM1,6MAD)
DO 32 J=NN1,NA1

WRITE(6,*) J

WRITE(6,*) (T(I,J),I1=MA2,MM2)

WRITE(6,*) (FX(1,J),I=MAZ,MM2)
WRITE(6,*) (FY(I,J),I=MA2,MM2)
DO 33 J=NAZ,NN2

WRITE(6,*) J

WRITE(6,*) (T(I,J),I=MM1,HMA1)

WRITE(6,*) (FX(I,J),I=MM1,MA1)
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o
;o
2 33 WRITE(6,*) (FY(I,J),I=MM1i,6MA1)
DO 34 J=NA2,NN2
) WRITE(6,*) J
s WRITE(6,*) (T(I,J),1=MAZ,MM2)
3 WRITE(6,*) (FX(I,J),I=MAZ,MM2)
N 34 WRITE(6,%) (FY(I,J),1=MA2,MM2)
\ WRITE(6,101)
' hd 101 FORMAT(/,S5X,'TS',/)
" DO 20 J=1,KJ1
) 20 WRITE(6,90) (TS(I,J),I=1,LI1)
v WRITE(6,102)
2 102 FORMAT(/,SX,'FXS',/)
b DO 21 J=1,KJ1
o 21 WRITE(6,90) (FXS(I1,J),I=1,LI1)
. WRITE(6,103)
' 103 FORMAT(/,SX,'FYS',/)
% DO 22 J=1,KJ1
S 22 WRITE(6,90) (FYS(I,J),1=1,LI1)
N 90 FORMAT(S(1X,D14.7))
Lol 5 IF(NT .LT. NTE) GO TO 100
h STOP
% END
h &
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NN C THIS SUBROUTINE INPUTS COORDINATES X & Y AND CALCULATES THE
C DERIVATIVES OF THE COORDINATES
C
SUBROUTINE XYLCT(X,Y,XS,YE,XSS,YEE,DA,DG,SIG,TAU,I1,J1)
IMPLICIT REAL*8 (A-H,0-2)
C
C X & Y = COORDINATES IN PHYSICAL PLANE
o XS,YE,XSS,YEE = THE DERIVATIVES OF THE COORDINATES IN
C PHYSICAL PLANE WITH RESPECT TO THE COORDINATES IN
C COMPUTATIONAL PLANE
C DA,DG,SIG,TAU = COEFFICIENTS DEFINED IN TEMPERATURE EQUATION
C
DIMENSION X(I1,J1),Y(I1,J1),XS(I1,J1),YE(I1,J1),XSS(11,J1)
DIMENSION YEE(I1,J1),DA(I1,J1),DG(I1,J1),SIG(I1,J1),TAUCI1,J1)
12=11-1
J2=J1-1
13=11-2
J3=J1-2
C
DO 90 J=1,J1
DO 91 I=1,I1
X(I,J)=0.D0
Y(I,J)>=0.D0

XS(I,J)=0.D0
YE(I,J)=0.DO
XSS(1,J)=0.D0
YEE(I,J)=0.DO
DA(I,J)>=0.D0
DG(1,J)=0.D0
S1G(1,J)=0.D0
TAU(1,J)=0.D0

91  CONTINUE
90 CONTINUE
C
DO 1 J=1,J1
C
DO S I=1,4
S X«I,H=(I-1)*0.5SD0
C
DO 6 1=5,9
6 X(I,J)=1.SD0+(I-4)*0.1D0
C

DO 7 1-10,134
T X(1,J)=2.D0+(I~9)¢0.02D0

DO 8 1=135,138
8 X(I,J)=4.SD0+(I-134)*0.0SD0

c
DO 9 1=139,145
9 X¢I,J)=4.7D0+(I-138)%0.1D0
C
1 CONTINUE
C
DO 3 I-1,11
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Y(I,1)=0.D0
1 A Y(I.2)=0.005D0
Y(I,3)=0.01D0
Y(I,4)=0.016D0
", Y(I,5)=0.023D0
Y(I,6)=0.031D0
Y(I,7)=0.04D0
N © Y(1,8)=0.05D0
'y Y(I,9)=0.059D0
% Y(I,10)=0.067D0
. Y(I,11)=0.07SD0O
. Y(1,12)=0.082D0
N Y(I,13)=0.088D0
o Y(I,14)=0.094D0
- Y(I,15)=0.1D0
S Y(I,16)=0.107D0
: Y(I,17)=0.115D0
N Y(I,18)=0.125D0
N Y(I,19)=0.137D0
" Y(I,20)=0.151D0
: Y(I,21)=0.167D0
N Y(I,22)=0.185D0
R Y(I,23)=0.205D0
N Y(I,24)=0.225D0
9 Y(I,25)=0.245D0
. Y(I,26)=0.27D0
Y(I,27)=0.3D0
Y(I,28)=0.34D0
Y(I,29)=0.4D0
Y(I,30)=0.48D0
Y(I,31)=0.58D0
® Y(I,32)=0.78D0
Y(I,33)=1.08D0
3 CONTINUE

! DO 17 J=2,J2
DO 18 I=2,12

\ ¢ XS(I,D)=(X(I+1,J)-X(I-1,J))/2.D0

¢ YE(I,J)=(Y(I,J+1)-Y(1,J-1))/2.DO

p- XSS(I,J)=X(I-1,J)-2.DO*X(I,J)+X(I+1,J)
d YEE(I,J)=Y(1,J=1)~2.DO*Y(I,J)+Y(I, J+1)
18  CONTINUE

17  CONTINUE

'C I=1
DO 19 J=2,J2
XS(1,J)=(=3.DO*X(I,J)+4.D0*X(I+1,J)~-X(1+2,3))/2.D0
YEC(I,J)=(Y(I,J+1)-Y(I,J~1))/2.D0

19  CONTINUE

i C J=1
DO 20 I=2,12

XS(1,J)=(X(1+1,J)-X(1-1,J))/2.D0
YE(I,J)=(-3.D0*Y(I,J)+4.DO*Y(I,J+1)-Y(I,J+2))/2.D0
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CONTINUE

I=11

DO 21 J=2,J2
XS(1,J)=(X(1-2,J)-4.D0*X(I-1,J)+3.D0*X(I,J))/2.D0
YE(I,J)=(Y(I,J+1)-Y(I,J-1))/2.D0

CONTINUE

J=J1

DO 22 I=2,12

XS(I,J)=(X(I+1,J)-X(I1-1,J))/2.D0
YE(I,J)=(Y(I,J-2)-4.D0*Y(I,J-1)+3.D0*Y(I1,J))/2.D0
CONTINUE

Xs(1,1)=Xs(1,2)
XS(1,J1)=XS(1,2)
XS(I11,1)=XS(I11,2)
XS(I1,J1)=XS(I1,2)
YE(1,1)=YE(2,1)
YE(1,J1)=YE(2,J1)
YE(I1,1)=YE(2,1)
YE(I1,J1)=YE(2,J1)

DO 25 J=1,J1

DO 26 I=1,I1

DA(I,J)=1.D0O/XS(1,J)**2
DG(I,J)=1.DO/YE(I,J)**2
SIG(I,J)=-YEE(I,J)/YE(I,J)**3
TAUCI,J)==XSS(I,J)/XS(I,J)**3
IF(DABS(SIG(1,J)) .LT. 1.D-10) SIG(1,J)=0.D0
IF(DABS(TAU(I,J)) .LT. 1.D-10) TAU(I,J)=0.DO
CONTINUE

CONTINUE

RETURN
END
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‘3 C THIS SUBROUTINE INPUTS THE SURFACE B.C.

1 Mg SUBROUTINE QIN(DX,DT,NT,I1,Q,1I,JJ)
" IMPLICIT REAL*8 (A-H,0-2)

Q = SURFACE HEAT INPUT

[eNeNe]

e DIMENSION Q(I1)
\
N\

NR2=DX/DT,NR1=NR2/2

eNeKe!

k- NR1=1
NR2-=2

o DO 24 I=1,11
Q(1)=0.D0
24 CONTINUE

>

-

IF(NT .GT. 2) GO TO 21
. NC1=0
i NC2=0
NC3=0
NTT-1
ND1=NR1
ND2=NR2
ND3=0
e ¢ NNT=1
21 NC1=NCi+1
NC2-NC2+1
IF(NC1 .EQ. NR1) GO TO 1
GO TO 4
NC3=NC3+1
: @ IF(NC3 .EQ. 1) GO TO 6
NC3=0
GO TO 1
NTT=NTT+1
NC1=0
I1=74-NTT+1
- IF(NC2 .GE. NR1) GO TO 2
PB=0.5D0
GO TO 5
2 IF(NC2 .LT. NR2) GO TO 3
PB=0.5D0
NC2-0
GO TO 5
3 PB=0.D0
§ Q(II1)=PB+DT*NC1/DX
ND1=ND1-1
NDZ=ND2-1
IF(ND1 .EQ. 0) GO TO 11
GO TO 12
11 ND3=ND3+1
IF(ND3 .EQ. 1) GO TO 13
ND3=0
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GO TO 14
13 NNT=NNT+1
14 ND1=NR1

12 JJ=124-NNT+1
IF(NDZ .LE. NR1) GO TO 1S

PF=0.D0
GO TO 16
15 IF(ND2 .GT. 0) GO TO 17
ND2=NR2
PF=0.D0
GO TO 16
17 PF=0.5D0
16 Q(JJ)=PF+DT*ND1/DX
111=11+1
JJ1=JJ-1
X C
b DO 23 I=1I1,JJ1
ggqe Q(I)=1.D0
SN 23 CONTINUE
P c
'_0_? RETURN
;\"“.'J END
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THIS SUBROUTINE SOLVED A LAYERED MEDIUM WITH A CAVITY, THE TOP
EDGE OF THE CAVITY IS AT THE INTERFACE

SUBROUTINE TEMP(T,TT,TTT,Q,FX,FY,X,Y,XS,YE,XSS,YEE,DA, DG,
ASIG,TAU,II,JJ,NT, I1,J1)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION T(I1,J1),TT(I1,J1),TTT(I1,J1),FX(I1,J1),
AFY(I11,J1),Q(I1),X(I1,J1),Y(11,J1),XS(11,J1),YE(I1,J1)
DIMENSION XSS(11,J1),YEE(I1,J1),DA(I1,J1),DG(I1,J1),
ASIG(I1,J1),TAU(I1,J1)

COMMON /AS54/ RL1,RL2,RLI,RLC,RMU1,RMUZ,RMUI,RMUC,EX1,EXZ,
AEXI,EXC,HAK,RHC

COMMON /ASS/ DV,DL,DIFF1,DIFF2,COND1,CONDZ,BETA,R1,R2,
AALPHS,DX,DY1,DY2,DT,R11,R12,R21,R22,A1,AZ2,A3,A4,A5,A,AA,A6,AT,A8
COMMON /AS6/ DTR1,DTRZ,M1,M2,N1,N2,MM1,MM2,NN1,NN2,NA1,NA2Z,
AMA1,MA2,K1,K2,K3,NTE,M122,M222,M112,212,N121

COMMON /AS7/ 1D2,1D21,1D3,1D31,12,J2,13,J3,14,J4

IF(NT .NE. 2) GO TO 100

Do 1 J=1,J1

DO 2 I=1,1I1

T(I1,J)=0.D0

TT(I,J)=0.D0

TTT(1,J)=0.D0

CONTINUE

CONTINUE

COMPUTE TEMPERATURE OF THE COATING LAYER
DA,DG,SIG,TAU = THE COEFFICIENTS DEFINED IN THE TEMPERATURE
EQUATION

DO 3 1=2,12

DO 4 J=2,K2

AA1=DACI, D *(TT(I-1,J)=2.DO*TT(1,1)+TT(I+1,J))
AA2=DG(I,J)*(TT(I,J-1)-2.DO*TT(I,+IT(I,J+1))
AA3=SIG(I,J)*(TT(I,J+1)-TT(1,J-1))/2.D0
AA4=TAU(T, D *(TT(I+1,)-TT(I-1,J))/2.DO
AAA=AA1+AAZ+AA3~rAAL

IF(NT .GT. 2) GO TO 5

2 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE

T(1,J)=TT(I,J)+AAA*DT/R1
GO TO 4

3 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
T(1,J)=(2.DO*AAA*DT/R1+4.DO*TT(1,J)~TTT(1,J))/3.D0
CONTINUE

CONTINUE

COMPUTE TEMPERATURE OF THE SUBSTRATE




AA1=DA(I, ) *(TT(I-1,J)=2.DO*TT(I,+TT(I+1,J))
AAZ2=DG(I, N *(TT(1,J~1)-2.DO*TT(I,+TT(1,J+1))

{ AA3=SIG(I,J)*(TT(I,J+1)-TT(I,J-1))/2.DO
¥ AA4=TAU(I,J)*(TT(I1+1,J)-TT(1-1,J))/2.D0
b AAA=AA1+AAZ+AA3+AA4L
e IF(NT .GT. 2) GO TO 8
C
! c 2 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
\ C
; T(I1,J)=TT(I,J)+AAA*DT/R2
: C
S GO TO 17
- C
B C 3 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
c
‘ 8 T(I,J)=(2.DO*AAA*DT/R2+4.DO*TT(1,J)~TTT(I1,J))/3.D0
N 7 CONTINUE
o 6 CONTINUE
N C
& DO 9 J=N1,N2
4 DO 10 I=M1,M2
o T(I,J)=0.D0
- 10 CONTINUE
ke 9 CONTINUE
S C
o C COMPUTE TEMPERATURE OF THE CORNER POINTS
) C
\ IF(NT .GT. 2) GO TO 12
5 C
- C 2 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
. c
: c CORNER A
C
s T(M1,N1)=TT(M1,N1)+(0.SDO*A2*R11*TT(M1-1,N1)-
e AA6*TT (M1,N1)+0.SDO*BETA*R12*TT (M1,N1+1)+0.SDO*R11*TT(M1+1,N1)+
- AR12*TT(M1,N1-1))/A5
C
> C CORNER B
‘ c
T(M2,N1)=TT(M2,N1)+(0.SDO*R11*TT(M2-1,N1)-A6
N A*TT(M2,N1)+0.SDO*BETA®R12*TT(M2,N1+1)+0.5D0O*A2*R11*TT (M2+1,N1)
; A+R12*TT(M2,N1-1)) /A5
: C
R C CORNER C
C
|14 T(M1,N2)=A*TT(M1,N2)+4.D0* (R21* (TT(H1-1,N2)+
- AO.SDO*TT(M1+1,N2))+R22*(0.SDO*TT (M1,N2-1)+TT(M1,N2+1)))/3.D0
. C
9 C CORNER D
Y C
o T(M2,N2)=A*TT(M2,N2)+4.D0® (R21*(0.5DO*TT(M2-1,N2)
A+TT(M2+1,N2))+R22*(0.SDO®TT (M2,N2-1)+TT(M2,N2+1)))/3.D0
)
_ C
' GO TO 14
¢ -174-
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[oNeNe]

12

14

3 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
CORNER A

T(M1,N1)=(-TTT(M1,N1)+4 DO*TT(M1,N1)+2.DO*
A(0.SDO*A2*R11*TT(M1-1,N1)-A6*TT(M1,N1)+0.SDO*BETA®*R12*TT (M1,
AN1+1)+0.5DO*R11*TT(M1+1,N1)+R12*TT(M1,N1-1))/A5)/3.D0

CORNER B

T(M2,N1)=(~-TTT(MZ,N1)+4.DO*TT(M2,N1)+2.D0*
AC0.SDO*R11*TT(M2-1,N1)-A6*TT(M2,N1)+0.SDO*BETA*R12*TT(MZ,Ni+1)+
AO.SDO*A2*R11*TT(M2+1,N1)+R12*TT(M2,N1-1))/A5)/3.D0

CORNER C

T(M1,N2)=(-TTT(M1,N2)+4.DO*TT(M1,N2)+8.D0*
A(R21*(TT(M1-1,N2)-1.5DO*TT(M1,N2)+0.5DO*TT(M1+1,N2))+R22*(0.5D0
A*TT(M1,N2-1)-1.5DO*TT(M1,N2)+TT(M1,N2+1)))/3.D0)/3.D0

CORNER D

T(M2,N2)=(-TTT(M2,N2)+4.DO*TT (M2,N2)+8.D0*
A(R21*(0.5DO*TT(M2-1,N2)-1.5DO*TT(M2,N2)+TT(M2+1,N2))+R22*(0.5D0*
ATT(M2,N2-1)-1.5D0O*TT(M2,N2)+TT(M2,N2+1)))/3.D0)/3.D0

COMPUTE TEMPERATURE ON THE LEFT & RIGHT HAND EDGE OF THE CAVITY

DO 15 J=NA1,NA2

I=M1

DDY1=Y(I,J)=Y(1,J-1)

DDY2=Y(I,J+1)-Y(I,J)

YY1=DDY1**2+DDY1*DDY2

YY2=DDY1*DDY2+DDY2**2
EE1=DT*((TT(1-1,J)-TT(I,J))/DX**2+(TT(I,J-1)~-TT(I1,J))/YY1+
A(TT(I,J+1)-TT(I,J))/YY2)/R2

IF(DABS(EE1) .LT. 1.D-65) EE1=0.D0

I1=M2
EE2=DT*((TT(I+1,J)-TT(1,J))/DX**2+(TT(1,J-1)-TT(I,J))/YY1+
ACTT(IL,J+1)-TT(1,J))/YY2)/R2

IF(DABS(EEZ) .LT. 1.D-65) EE2=0.DO

IF(NT .GT. 2) GO TO 16

2 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
I=M1

T(I,J)=TT(1,J)+2.DO*EE1

1=M2

T(I,3)=TT(I,J)+2.DO*EE2

GO TO 15

3 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE
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16 I=M1
T(I,J)=(-TTT(1,J)+4.DO*TT(I,J)+4.DO*EE1)/3.D0
I=M2
T(I,J)=¢(-TTT(1,J)+4.DO*TT(1,J)+4.DO*EE2)/3.D0

1S CONTINUE

COMPUTE THE TEMPERATURE ON THE TOP & BOTTOM EDGE OF THE CAVITY

oo Ne!

DO 17 I=MA1,MAZ
IF(NT .GT. 2) GO TO 18

2 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE

anoon

J=N1
T(I,J)=AA*TT(I,J)+R11*(TT(I1+1,J)+TT(1-1,J))+2.DO*R12*TT(],J-1)
J=N2
TCI,J)=A*TT(1,J)+R21*(TT(1-1,J)+TT(1+1,J))+2.DO*RZ22*TT(1,J+1)

GO TO 17

3 POINTS BACKWARD DIFFERENCE IN TIME DERIVATIVE

eNeNe]

18 J=N1
T(I,J)=(-TTT(1,J)+4.DO*TT(1,J)+4.D0*(R11*(0.SDO*TT(I+1,J)~
ATT(I1,J)+0.SDO*TT(I~1,J))+R12*(TT(I,J~1)-TT(1,J)11)/3.D0
J=N2
TCI,J)=(-TTT(1,J+4 . DO*TT(I,J)1+44.D0*(R21*¢0.5D0°*T{¢1-1. .0
A-TT(I,J)+0.SDO*TT(I+1,J))+R22*(TT(I,J+1)-TT(1.J»)»1/3.DO0
17 CONTINUE

COMPUTE THE TEMPERATURE AT THE INTERFACE

anon

DO 19 1J=1.,2
IF(IJ .EQ. 1) GO TO 20
MN1=MM2
MN2=12
GO TO 21
20 MN1i=2
MN2=-MM1
21 DO 22 I=MN1,MN2
J=K1
DDX1=X(I, ) =X¢(I1-1,0»
DDX2=-X(I+1,J)-X(]1, 0
XX1=DDX1%*2+DDX1*DDX?2
XX2=DDX1*DDX2+DDX2%*?2
EE3=2.DO*A8*DT*(TT(I1-1 -7 ¢} Xy . a
ATT(I, D)) /XX2+2.D0O*DT®«T7 ] i-y 77 :
ABETA®DT®*(TT(1,J+1-TT1 1. Aoy e
IF(NT .GT. 2y GO TO 2

2 POINTS BACKWARD DIFFEWEN G 6 W

[oNe N

TCI,J) TTel, el
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GO TO 61
51 EF121=(3.DO*RLC+2.DO*RMUC)*1.2D1*EXC*HAK/RHC
61 IF(I .LT. MA1 .OR. I .GT. MM2) GO TO 62
IF(1 .GT. MA1 .AND. I .LT. MM2) GO TO 63
IF(I .EQ. MA1 .OR. I .EQ. MM2) GO TO 64
62 EF111=(3.DO*RLI+2.DO*RMUI)*1.2D1*EXI*HAK/RHC
GO TO 6S
63 EF111=(3.DO*RL1+2.DO*RMU1)*1.2D1*EX1*HAK/RHC
GO TO 6S
64 EF111=(3.DO*RLC+2.DO*RMUC)*1.2D1*EXC*HAK/RHC
65 IF(I .LT. M1 .OR. I .GT. M2) GO TO 66
IF(I .GT. M1 .AND. I .LT. M2) GO TO 67
IF(I .EQ. M1 .OR. I .EQ. M2) GO TO 68
66 EFIJ=(3.DO*RLI+2.DO*RMUI)*1.2D1*EXI*HAK/RHC
GO TO 70
67 EFIJ=(3.D0*RL1+2.D0*RMU1)*1.2D1*EX1*HAK/RHC
GO TO 70
68 EFIJ=(3.DO*RLC+2.DO*RMUC)*1.2D1*EXC*HAK/RHC
70 IF(I .LT. MMi .OR. I .GT. MA2) GO TO 71
IF(I .GT. MM1 .AND. I .LT. MA2) GO TO 72
IF(I .EQ. MM1 .OR. I .EQ. MA2) GO TO 73
71 EF211=(3.DO*RLI+2.DO*RMUI)*1.2D1*EXI*HAK/RHC
GO TO 74
72 EF211=(3.DO*RL1+2.D0*RMU1)*1.2D1*EX1*HAK/RHC
GO TO 74
73 EF211=(3.DO*RLC+2.DO*RMUC)*1.2D1*EXC*HAK/RHC
74 IF(I .LT. M112 .OR. I .GT. M212) GO TO 7S
IF(I .GT. M112 .AND. I .LT. M212) GO TO 76
IF(I .EQ. M112 .OR. I .EQ. M212) GO TO 77
75 EF221=(3.DO*RLI+2.D0*RMUI)*1.2D1*EXI*HAK/RHC
GO TO 5S4
76 EF221=(3.D0*RL1+2.D0*RMU1)*1.2D1*EX1*HAK/RHC
GO TO S4
771 EF221=(3.DO0*RLC+2.DO0*RMUC)*1.2D1*EXC*HAK/RHC
GO TO S4
53 EF121=(3.D0*RL2+2.DO*RMU2)*1.2D1*EX2*HAK/RHC
EF111=(3.DO*RL2+2.DO*RMU2)*1.2D1*EX2*HAK/RHC
EF1J=(3.D0O*RL2+2.D0*RMUZ)*1.2D1*EX2*HAK/RHC
EF211=(3.DO*RL2+2.D0*RMU2)*1.2D1*EX2*HAK/RHC
EF221=(3.D0*RL2+2.DO*RMU2)*1.2D1*EX2*HAK/RHC
54 IX=II+J-1
IF(1 .LT. IX) GO TO 30
IF(I .GT. JJ) GO TO 31
FX(I,J)=(EF211°*T(1+1,J)~EF111*T(I-1,J))/(2.D0*XS(1,J))
GO TO 29
30 FX(I,J)=(EF121*T(1-~2,J)-4.DO*EF111*T(I1-1,J)+3.D0*EFIJ*T(I,J))
A/(2.DO*XS(I,J))
GO TO 29
31 FX(I1,J)=(-3.DO*EFIJ*T(1,J)+4.DO*EF211*T(1+1,J)-EF221°*T(1+2,J))
A/(2.DO*XS(I,J))
29 CONTINUE
28 CONTINUE

DO 32 J=2,J3
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DO 33 I=1,I1
IF(J .LT. NN1) GO TO 83
IF(J .EQ. NN1) GO TO 84
IF(J .GE. N1) GO TO 85
83 ES121=(3.DO*RL1+2.DO*RMU1)*1.2D1*EX1*HAK/RHC
GO TO 86
84 IF(I .EQ. M1 .OR. I .EQ. M2) GO TO 87
IF(I .GT. M1 .AND. 1 .LT. M2) GO TO 88
ES121=(3.DO*RLI+2.D0*RMUI)*1.2D1*EXI*HAK/RHC
GO TO 86
87 ES121=(3.DO*RLC+2.D0*RMUC)*1.2D1*EXC*HAK/RHC
GO TO 86
88 ES121=(3.DO*RL1+2.DO*RMU1)*1.2D1*EX1*HAK/RHC
GO TO 86
85 ES121-(3.D0*RL2+2.D0*RMU2)*1.2D1*EX2*HAK/RHC
86 IF(I .LE. N1) GO TO 91
IF(J .EQ. N121) GO TO 92
IF(J .GT. N121) GO TO °3
91 ES111-(3.D0*RL1+2.D0*RMU1)*1.2D1*EX1*HAK/RHC
GO TO 94
92 ES111=(3.DO*RL.I+2.DO*RMUI)*1.2D1*EXI*HAK/RHC
GO TO 94
93 ES111=(3.DO*RL2+2.DO*RMU2)*1.2D1*EX2*HAK/RHC
94 FY(I,J)=(ES121°*T(I,J+1)-ES111*T(I1,J-1))/(2.DO*YE(I,J))
33 CONTINUE
32 CONTINUE

J=1

DO 34 1=1.11

FY(I,J)y==Q(I)
34 CONTINUE

DO 37 J=NA1,NA2
DO 38 I=M1,M2
FX(1,J)=0.DO
FX(I,J)=0.D0

38 CONTINUE

37 CONTINUE

DO 39 J=N1,N2
DO 40 I=MA1,MA2Z
FY(I,J7=0.D0
FY(I,J)=0.DO

40 CONTINUE

39 CONTINUE

99 DO 41 1=2,12
DO 42 J=1,J2
TTT(I1,J)=TT(1,J)
TT(I1,J)=T(1,0)
42 CONTINUE
41 CONTINUE
RETURN
END

SRR T L L SR AL A s s



XY it e tiiat bt it a g adadag |
‘: .
:h,:‘
o L]
L A
I y:
A
L
A 9ES
boon C THIS SUBROUTINE MAPS TEMPERATURE AND ITS GRADIENTS IN
e { c THE TEMPERATURE FIELD TO THE CORRESPONDING POINTS IN THE
. C STRESS FIELD
"\:’, C
;;}; SUBROUTINE MAP(TS,FXS,FYS,T,FX,FY,I1,J1,LI1,KJ1)
s IMPLICIT REAL*8 (A-H,0-Z)
A -Q\‘-' C
s C T,FX,FY = TEMPERATURE AND ITS GRADIENTS IN TEMPERATURE FIELD
\ } C TS,FXS,FYS = TEMPERATURE AND ITS GRADIENTS IN STRESS FIELD
A C |
;ﬁﬁi DIMENSION T(I1,J1),FX(I1,J1),FY(I1,J1),TS(LI1,KJ1),
ot AFXS(LI1,KJ1),FYS(LI1,KJ1)
o C
AL PO 1 J=1,KJ1
DO 2 I=1,LI1
N TS(I1,J)=0.D0
N FXS(I1,J)=0.D0
A FYS(I1,J)=0.D0
K22 2 CONTINUE
W,
! 1 CONTINUE
Fo c
G DO 3 J=1,J1
Y IT1=1
T C
AN
P DO 4 1I=7,10
SON TS(I,J)=T(IT1,J)
s FXS(I,J)=FX(IT1,J)
-~ FYS(I,J)=FY(IT1,J)
N 4 IT1=IT1+1
ay) c
N 1T2=9
o,
N DO 5 I=13,15
') TS(1,J)=T(IT2,J)
. FXS(1,J)=FX(IT2,J)
S FYS(I,J)=FY(IT2,])
o S IT2=IT2+S
) C
f.\
N IT3=22
-." DO 6 1=16,19
g TS(1,J)=T(IT3,J)
.Q§ FXS(1,J)=FX(IT3,J)
o FYS(I,J)=FY(IT3,J)
p 0 6 IT3=1T3+3
o c
i 1T4=38
A DO 7 1=22,30
K TS(I,J)=T(IT4,J)
o FXS(I,J)=FX(IT4,J)
o FYS(1,J)=FY(IT4,J)
Iy 7  1Ta=1T4+3
e C
b 1TS=69
o DO 8 1-33,39
:tg TS(1,J)=T(ITS,J)
55
o0
o
-180-
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o
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FXS(I,J)=FX(ITS,J)
FYS(I,J)=FY(ITS,J)
8 ITS=ITS+3

IT6=91

DO 9 I1=40,42

TS(I,)=T(IT6,J)

FXS(1,J)=FX(1T6,J)

FYS(1,J)=FY(IT6,J)
9 ITe=ITe+4

IT7-104
DO 10 I=43,49
°® TS(I,J)=T(ITT,)
FXS(I,J)=FX(IT7,J)
FYS(I,J)=FY(ITT,J)
10 IT7=IT7+S

N
-
-
-
-
-

\
I.
:

1T8=136

DO 11 I=50,%4

TS(1,J)=T(IT8,J)

FXS(1,J)=FX(IT8,J)

FYS(1,J)=FY(IT8,J)
11 IT8=1IT8+2

TS(11,J)=T(6,J)
FXS(11,J)=FX(6,J)
FYS(11,J)=FY(6,J)
TS(12,J1)=T(8,J)
FXS(12,J)=FX(8,J)
FYS(12,J)=FY(8,J)
TS(20,J)=T(33,J)
FX$(20,J)=FX(33,J)
FYS(20,J)=FY(33,J)
TS(21,J)=T(35,))
FXS(21,J)=FX(35,J)
FYS(21,J)=FY(35,J)
TS(31,J)=T(64,J)
FXS(31,J)=FX(64,J)
FYS(31,J)=FY(64,J)
TS(32,J)=T(66,J)
FXS(32,J)=FX(66,J)
FYS(32,J)=FY(66,J)
CONTINUE

-~

o
(o]

RETURN
END
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MAIN PROGRAM
STRESS FIELD OF A LAYERED MEDIUM WITH A CAVITY, THE TOP
EDGE OF THE CAVITY IS AT THE INTERFACE

oNoNeNe]

IMPLICIT REAL*8 (A-H,0-2)

Y = COORDINATES IN THE PHYSICAL PLANE

MATRIX TO BE SOLVED

RIGHT HAND SIDE OF THE ALGEBRAIC EQUATIONS

V = DISPLACEMENTS IN X AND Y DIRECTION, RESPECTIVELY
611,812,522 = STRESSES

TS,FXS,FYS = TEMPERATURE AND ITS GRADIENTS FROM TEMPERATURE FIELD

™ P
non ge

OO0O00O0O0000
['od

DIMENSION X(67,35),Y(67,35),A(649740),B(4420),TS(67,3S),
AFXS(67,3S),FYs¢e67,35),U(67,35),V(67,35),511(67,35),
AS12(67,35),S22(617,35)

COMMON /Z1/ RMU1,RMU2,RMUI,RMUC,RMUIC,RMUI1,RMUIZ,RMUC1,RMUC2

COMMON /Z2/ RL1,RLZ,RLI,RLC,RLIC,RLI1,RLIZ2,RLC1,RLC2

COMMON /Z3/ DN1,DN2,DN3,DI1,DJ,RHC

C LI1 & KJ1 = THE TOTAL NUMBER OF GRID POINTS IN X AND Y DIRECTION

LI1=67
KJ1=35
L1=LI1-2
L2=LI1-1
K1=KJ1-1

MBAND = HALF BANDWIDTH

eRoNe]

o MBAND=K1*2+6-1

NEQ = TOTAL NUMBER OF EQUATIONS TO BE SOLVED

[oNoNe]

NEQ=L1%*K1*2

NTOT = TOTAL DIMENSION OF "A" VECTOR

OO0

NTOT=(2*MBAND+1)*NEQ
JJ=K1*2

M1 & M2 = X COORDINATES OF THE CAVITY CORNERS

3
i
[oNoNel

*V{ M1=19
M2=31
MR1=M1+1
MR2=M2+1

N1 & N2 = Y COORDINATES OF THE CAVITY CORNERS

e KeNe!

N1=14
N2=24
Mi11=M1-1
M121=M1+1
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